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It is shown that a strong Jahn-Teller deformation is developed in crystals with a
degenerate energy spectrum in the states corresponding to an autolocalized
barrier and that the barrier height always has a scale that is determined by the
heavy mass.
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Autolocalization (4L ) of excitons is associated with the surmounting of an autolo-
calized barrier formed as a result of an increase of the kinetic energy of an exciton
during its AL. An AL barrier has been observed experimentally in alkali-metal iodides,
in solid noble gases and in other materials. It is also formed for the current carriers as
a result of nonpolar interaction with phonons. Previously, the height of an AL barrier
was calculated'™ only for the models in which the state of the barrier conserves the
total symmetry of the point group of a crystal. The symmetry of the barrier states,
however, can be broken because of the Jahn-Teller (JT) effect, which reduces the
barrier.

Symmetry breaking can be easily investigated on the basis of the continuous
model in terms of which the J-T effect occurs for particles with a degenerate spectrum.
The continuous approximation can be used if the coupling with phonons is sufficiently
strong*; according to Ref. 5, for example, it can be used for light noble gases. The
degeneration of a spectrum, however, occurs almost without an exception when AL is
observed.® It should be emphasized that symmetry breaking at the surmounting stage
of the AL barrier is crucial, since it determines to a large extent the subsequent stages
of relaxation of the AL states and establishes advantageous conditions for the forma-
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tion of states with a reduced symmetry.

We shall examine below the particles with the momentum J = 1 (“excitons”) and
J = 3/2 (*holes”) in a spherical approximation. These particles have two branches of
the spectrum - one with a light mass and the other with a heavy mass (m, and m, ). We
shall limit ourselves to the model with a single deformation potential C and a single
elastic modulus X.

The barrier height W for excitons (the band with J = 1) is determined by the
steady-state functional
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that corresponds to its lower track point: W(r} is a three-component function. At
m, = m, the equations have the same form as in the nondegenerate spectrum, and the
J-T effect is missing. We analyze the limiting case m,/m,—0 below. In this case, we
set div ¥ = 0, i.e., ¥ = rot A{r). Thus, the Schrodinger equation, which corresponds to
Eq. (1), has the form

- — AY . — (V2V}, -EV. (2)

The subscript 4 of the second term shows that only the contribution of the heavy holes
is retained in it; at J = 1 this corresponds to elimination of the longitudinal part of the
function in accordance with the definition
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We can assume that the lower saddle corresponds to the W function, which is trans-
formed along one of the lines of the vector representation, for example, z; therefore,
A(r) = & (p,z)[z° Xr], where ¢ is an arbitrary, axially symmetric function and the defor-
mation is axially symmetric." In this case, a decrease of ¥(r) as r— 0, according to
Eqgs. (2) and (3), is determined by the formula ¥~ V3(r—')/3z, i.e., it obeys the power
law. After a simple, one-parameter approximation of ¢ (r)~ (> + @* >'?, which be-
haves normally when r—0 and r— 0, we obtain from Eq. (1)

W=JL¥, ,1=~174K%/C*m}, . ()

extr
Thus, W is determined by the heavy mass m,. The numerical coefficient in Eq. (4) is
approximately fourfold larger than that for the nondegenerate band [in which it is
equal to =44 (Ref. 2); it has the same value for m, = m, ]. If the oscillator strength of
the excitonic transition is large and the longitudinally transverse splitting 4, in the
spectrum is large (4, > > W), then Eq. (4) must be valid for an arbitrary m,/m,.

The anisotropy of W3(r) is large — the function, which is extended along the 0z
axis, is small in the plane z = 0; for example, at 7 = a? the ratio of the values of ¥? on
the axis and in the plane is equal to 16. Therefore, the system must have a tendency to
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“role down” to the extended (for example, quasi-molecular binodal) AL states after
surmounting the AL barrier. The role of the J-T effect can also be determined by
comparing Eq. (4) with the barrier in the ¥ = rg{r} functions, which belong to a com-
pletely symmetrical representation and give a spherically symmetric deformation.
Since div W#0 (in the normalizable functions), then W~m; ?, i.e., the barrier heights
differ in the parameter (m,/m,)* < < 1.

The ¥(r) function for the holes (the band with J=3/2} is a four-component
function and

i o o)
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We again obtain Eq. (2) in the limit m,/m, -0, but in this case by substituting the
following expression for Eq. (3):

®,(r) = -8—1— -%— A-Jvy)? f_i(_f_l_ dr’. (6)
m

lr —r7|

This function automatically satisfies the condition [%A — (JV)Z]tph = 0. We shall

again assume that we have an axially symmetric deformation and that the lower saddle
corresponds to the states with the original symmetry corresponding to the band sym-
metry, i.e., with the momentum 3/2. This gives rise to two Kramers doublets of the ¥
states: with projections of the momentum M = + 1/2 and + 3/2. The ¥,,, and ¥, ,
functions, which were dropped here, depend on two axially symmetric functions ¢,
and ¢, that are defined by the condition 6J[¥] = 0. Limiting ourselves to a one-
parameter approximation analogous to that used above, we obtain

Wyjo= Wy = 413K/ C4m} . 4y

Therefore, W in this case is determined by the mass m,,, but the numerical coefficient
increases further.

Although the barrier height for W, ,, is the same as that for ¥, ,, in the approxi-
mation used by us, the shape of their ¥ cloud [and hence the spatial distribution of
the deformation €(r)~%¥*(r)] is markedly different: the cloud is extended along the z
asis in the states with M = 4 1/2 and it is flattened and concentrated near the plane
z = 0 in the states with M = + 3/2. The use of more flexible variational functions will
presumably diminish both quantities W,,, and W, and destroy their equality, al-
though they will apparently remain similar. This means that at temperatures
TR (W, — Wy,,| the relaxation proceeds through two channels to the different 4L
states which can be observed simultaneously (for example, in the hot-fluorescence
spectra).
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In conclusion, we note that the tunneling AL also proceeds through the states
with a broken symmetry.

Thus, as m, decreases, the barrier height W increases, although it preserves its
order of magnitude which is determined by the mass m,; at the same time, the J-T
lattice deformation increases.

We thank G. E. Pikus for a valuable discussion.

"This means that the maximum symmetry (axis + center of symmetry) is preserved, consistent with the
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