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It is shown that if an unperturbed problem is a multidimensional harmonic
oscillator or a hydrogen-like system and the perturbation is a polynomial, then
the formulation of perturbation theory must be a purely algebraic problem. A
hydrogen-like system in an electric field & parallel to the magnetic field 7 is
analyzed. The correction to the ground-state energy of order & > and 7 is
calculated. Some structures of the arbitrary “correction to the wave function”
are determined in the explicit form.

PACS numbers: 11.10.St, 11.20.Dj

1. The Rayleigh-Schrédinger perturbation theory (PT) is one of the more widely
used methods of solving problems associated with the spectrum of bound states. A
serious deficiency of this method, however, is that it requires knowledge of the total
spectrum of the unperturbed problem and it deals with problems such as the calcula-
tion of the matrix elements and summation of the multiple series, which are often
technically difficult to overcome. We shall show in this paper that in the case of
frequently occurring problems such as the polynomial perturbation of the harmonic
oscillator or of the Coulomb system, the formulation of PT is a purely algebraic prob-
lem which reduces to the solution of recursion formulas that allow a simple formaliza-
tion on a computer.

2. A method of dealing with the spectrum in quantum mechanics, which is based
on the “nonlinearization procedure” (see also Refs. 2 and 3), was formulated in Ref. 1.
Its main advantage is that the total spectrum of the unperturbed problem does not
have to be known. We shall briefly review the salient features of this method. We shall
use the logarithmic derivative y= — \J¢ = — /1n¥ of the wave function 1 instead of
the wave function itself. The Schrodinger equation in this case has the form'?

divy-y2=E - V. ' (1)

Suppose that V=V, + AV,. We shall develop a PT for (1) according to the parameter
A

y = 2,\”yn, E = Z)\'E . (2)
We can determine the correction from the following equation'? in this case:

A¢nw2yov¢>n =En—Qn, n> 1, (3)
where y,= —Y1lny, and E, and Q, are determined from the preceding iterations
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n -1
2 2
QI=V1’ Qn=—i2=lyiyn_i, En=an¢0dx/f(//0dx.. (4)
Notice that Q, can have the meaning of a perturbation potential. The formula for E,
in Eq. (4) must be modified slightly for the excited states.® However, since this formula
will not be used here, we shall not discuss it.

3. Our goal in this paper is to formulate a PT for the unperturbed potential that
corresponds to the harmonic oscillator

n
vV =2 a-x?

o i’
i=1

a, >0 (5)

1

and to the hydrogen-like system

2a

A (6)

r

but the perturbation is a polynomial

‘lmax“"'n max

or [for the potential (6)]
l k

max maex
V.= 3 R ()Y ¢), R, =2 aprk (8)
Lym k=1
where r = (x3 + x3 + x3)}, u = cos @, and Y " are the spherical harmonics. We shall
now formulate the main propositions of our study.
Proposition 1. The corrections to ¢, are polynomials in the PT for the ground state of
the potential (5) when the perturbation is a polynomial. If, moreover, the maximum
power of the x, variable is equal to I, then the maximum power x, in the correction
to ¢, must be in the range of nf, — 2n + 2 to ni,.
Proposition 2. The correction to ¢, has a finite number of harmonics with polynomial
coefficients in the PT for the ground state of the potential (6) when the perturbation
contains a finite number of harmonics with polynomial coefficients of r.

Both of these propositions, which seem to be rather obvious, can be easily proved
inductively. If we assume that ¢, are polynomials for [ < n, then ¢, [see Eq. (4)] must
also be polynomials. The problem, therefore, reduces to proving whether a polynomial
solution of Eq. (3), whose right-hand side is a polynomial, exists. Rather than proving
this, we shall mention only that the correction to ¢, in the case of the potential (5),
where y, = (a,x, 4,%,,4,X,), contains the same conminations of the (i,7,.-, ) powers
as the V, potential, as well as combinations similar to them
(i) — 2k sl — 2koyeid, — 2k,,), where ky, k,,k, are positive integers.” We can show
that such assumptions (with some modifications) are valid for the excited states.

The determination of the corrections to ¢, and E, ,2 therefore, reduces to the
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solution of recursion formulas, i.e., it is an algebraic problem. Moreover, we can easily
write the explicit solution of these recursion formulas for the coefficients of the leading
powers of these polynomials. They can also be solved rather easily on a computer.

4. We shall briefly discuss the obtained results. Proposition 1 seems to be quite
reasonable if we recall that the perturbations (7) have a rather limited number of
nontrivial matrix elements of the transitions (see, for example, Ref. 4). The sums of the
intermediate states in this case are finite and the corrections to the wave function are
expressed as a polynomial multiplied by the exponent. This was first systematically
investigated by Bender and Wu® for a one-dimensional anharmonic oscillator and in
collaboration with Banks® for a two-dimensional anharmonic oscillator. They have
obtained recursion formulas, investigated the properties of polynomials, and deter-
mined 75 terms in the PT series for the ground-state energy. The polynomial ¢, was
also used in the one-dimensional case in other investigations, for example, in Ref. 7
and in the two-dimensional case in Ref. 3.

Proposition 2 is considerably more important. However, the polynomial nature of
PT in this case can be almost immediately evident if we assume that the Coulomb
system is equivalent to the four-dimensional harmonic oscillator.® The polynomial PT
has been noted in Ref. 2 in connection with the multipole static perturbation and in
Refs. 9 and 10 in the Stark effect and in the Zeeman effect in hydrogen.

5. To demonstrate the possibilities of the method described by us, we shall exam-
ine the classical hydrogen-like system (hydrogen-like atom, exciton) in an electric field
& parallel to the magnetic field /. This problem, which has been analyzed qualitative-
ly'! but not quantitatively to any extent, has important applications in astrophysics, in
semiconductor physics, and in spectroscopy.

We limit ourselves here to the study of the ground state, calculate the term
~&2977, which is important in weak fields, and describe the general structure of the
corrections to ¢,,. Thus, the & ||## ground-state potential has the form

2 - /2
Vom Zer it a g = CrBG) « KR () 9)
We shall build the PT for the £ and 5 fields,
k 21 k 421
E- 2 E, & KX -2 0,8 X (10)
» I » It
where ¢, = ar, E, = — a? here Eqs. (4) have a slightly modified form. Analysis of Eq.
(3) shows that the arbitrary correction of ¢, has the structure
n+( k/2]

By = 2 R P

l=D

kynyant k=2l Pons k= 20 (B);

on+ k+1
= p3 a,r"™ (11)
m=2n+k~ 21

m#o0

R

k,n,2n+ k-2l
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We emphasize that the polynomial of the leading harmonic P,, | , is a binomial
and that the preceding harmonic P,, , , _, is a quadrinomial, etc. An analogous struc-
ture was previously observed in the study of the Zeeman effect (£ = 0).'° Some coeffi-
cients of these polynomials can be easily determined in the explicit form. For example,
the polynomial of the leading harmonic is

(2n+ k)12 (2n + 2k)1 2-2F p2nt kil
(4n + 2k) (n + B) VA nl (20 + 2k — 1 )] 37 g2n+ 2E=1

- Rk,n,2n+ k

~on—2k+1
2o+ W12+ k=D | Qo+ 28)(n+ k)2 =2k
+,

22k +4n) kln! (nr E)1 X2+ k)

n T2n+k
y (.4_) . (12)
3 a2n+2k

For £k = 0§ =0) Eq. (12) becomes an equation which was previously obtained in
Ref. 10. The E,, corrections are connected with ¢,,. We write the first terms of the E

expansion in the explicit form
4 3555 4 317
thal ‘_62 '-7{ - sl ri e
(13)

6’6

Notice that the coefficients of the fourth-order terms have almost the same val-
ues. In principle, the subsequent corrections can be determined without much difficul-
ty. However, because of the asymptotic nature of the series {13), it is not clear whether
they should be determined. The excited states can be analyzed in the same manner as
in Ref. 10 for £ =0. The results of this analysis will be discussed in another paper.

We showed that the formulation of PT is an algebraic problem in two important
special cases. Evidently, this also applies to other cases in which the zeroth approxima-
tion is an exactly solvable problem.

" Of course, i, — 2k, >0 in these combinations.
? The correction to E, is expressed in terms of the ¢, coefficients of the terms ~x2.

'A. V. Turbiner, Preprint ITEF-117, 1979.

2C. K. Au. Y. Aharonov, Phys. Rev. A20, 2245 (1979).

*A. V. Turbiner, Preprint ITEF-139, 1979; Zh. Eksp. Teor. Fiz. 79, 1719 (1980) [Sov. Phys. JETP—,
(1980)].

‘L. D. Landau and E. M. Lifshitz, Kvantovaya Mekhanika (Quantum Mechanics), Nauka, Moscow, 1974,
°C. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).

°T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev. D8, 3346 (1973).

"A. D. Dolgov and V. S. Popov, Zh. Eksp. Teor. Fiz. 75, 2010 (1978} [Sov. Phys. JETP 48, 1012 (1978)]; S.
Hikami and E. Brézin, J. of Phys. A12, 759 {1979).

®A. C. Chen, Phys. Rev. A22, 333 (1980).

176 JETP Lett, Vol. 33, No. 3, 5 February 1981 A. V. Turbiner 176

$



“S. P. Alliluev, V. E. Eletskii, and V. S. Popov, Phys. Lett. 73A, 103 (1979).
'"A. V. Turbiner, Preprint ITEF-99, 1980.

"'L. A. Burkova, I. E. Dzyaloshinskii, G. F. Drukarev, and B. S. Monozon, Zh. Eksp. Teor. Fiz. 71, 526
{1976) [Sov. Phys. JETP 44, 276 (1976)].

Translated by S. J. Amoretty
Edited by Robert T. Beyer

177 JETP Lett, Vol. 33, No. 3, 5 February 1981 A. V. Turbiner 177





