Self-induced transparency of surface polaritons
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A self-induced transparency (SIT) of surface polaritons under resonance
conditions with oscillations in the transition layer is predicted. The shape of the
surface soliton (surface “27” pulse) is determined and the dependence of its
duration on the dielectric constants of the contacting media and on the
characteristics of the layer is investigated. The layer is described in the context
of the model of a two-dimensional gas of the two-level systems.

PACS numbers: 71.36. + ¢, 73.20.Cw, 42.65.Gv

The self-induced transparency (SIT) in gaseous and condensed media, which was
predicted in Ref. I, has been thoroughly investigated (see, for example, Ref. 2 and the
literature cited therein). However, the SIT in surface electromagnetic waves heretofore
has not been discussed. Because of the increased research in surface spectroscopy, this
possibility has now become worth exploring.

We report in this paper the first results of the formulation of the SIT theory for
surface polaritons. Suppose that there is a thin transition layer in an isotropic polariza-
tion P(x,r)8(z) in the plane z =0 at the interface (z=0) of the isotropic media
Iz> 0,6 = €,) and Il{z < 0,6 = €,). If the surface current is taken into account, then the
boundary conditions for z= 0 for the field components in the H wave propagating
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along the x axis [H = (0,H,0), E = (£,,0,E,)] must have the form
g e 47 9
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After conversion to Fourier components in x and ¢, the wave equation of H, i.e.,
the equation
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where €, = €, for z>0 and €, = ¢, for z <0, has the following solution which de-
creases as z— + co:
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It follows from the Maxwell equation rot H = iC%D— as z— + 0 that
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so that if we take Eq. (1) into account and set E '(k,w) = E Pk,0) = E_(k,0)
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where
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The relations (3a) and (3b} obtained on the basis of the Maxwell equations establish a
correlation between the boundary value of the electric field intensity and the transi-
tion-layer polarization and are valid for any linear or nonlinear material correlation
between them.
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We are interested in the solutions of Eq. (3b) in the pulse form

E (x,¢)=e(x, t)expli (Qx - Q) ], (4)

which satisfies the “‘slowness” condition o <Qe, % <e. If the f(k,w) function
X t

varies slowly in the spectral pulse width, we can use below the expansion
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in the calculation of the left-hand side of Eq. {3b). We shall assume, moreover, that the
pulse duration is short compared with the relaxation time of two-level molecules in the
transition layer and, for simplicity, we shall also assume that the frequency £2 exactly
matches the transition frequency in the two-level systems. As we know,'? in this case

P(x,t)=ip(x, t)expli (Qx - Q¢)]
(6)

1
p(x, t) = 5 dn sin¥(x, ¢),
where d is the dipole moment of the transition, n, is the density of two-level molecules

in the transition layer, and ¥ =d {* _ e(x,t')dt’. Substituting Eqs. (5} and (6} in Eq.
(3b) and separating the real and the imaginary parts, we obtain two equations
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where v, = d2/dQ. The first equation in (7), which determines the dependence
2 = 12 (Q) for the carrier frequency in Eq. (4), coincides with that [see Eq. (3b}] for the
surface polariton, if the transition layer is ignored. The second equation for the steady-
state pulses, i.e., those with e(x,#) = e(7), where 7 = ¢ — x/u and u is the pulse rate, has
the form

d2v 1
7—2 = -—2—sin L 8 (8)
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The derivative (j—t)w _p, > Oin the region of the surface polariton (see, for example,

@7y

Ref. 3) and the inequaﬁty U < Uy, follows from Eq. (9). The solution of Eq. (8), which
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corresponds to the solution (see Ref. 1), is e(r) = 2 cosh™'(r/ 7,), so that the field in
T
p
the plane z = 0 [see Eq. (4)]turns out to be completely defined. The relations (2) and
{2a) as well as the relation for the electric-field intensity analogous to (2}, together with
the Maxwell equations, completely define all the field components in the pulse for
arbitrary x, ¢, and z.

We emphasize that the obtained surface SIT pulse, in contrast with the pulse
analyzed in Ref. 1, has a certain small radiation width which depends on the capacity
of the body waves to radiate into the half-space z> O (for specificity, we assume that
€,> 0 and €, < 0) by the tail of the spectral decomposition of the pulse for such k and »
whose «3 (k,w) <0.

The method discussed makes it possible to analyze the SIT in thin, macroscopic
films and in waveguides.
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