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Deconfinement phase transition due to disappearance of confining colorelectric field correlators is described
using nonperturbative equation of state. The resulting transition temperature T.(u) at any chemical potential
p is expressed in terms of the change of gluonic condensate AG> and absolute value of Polyakov loop Leyna(Te),
known from lattice and analytic data, and is in good agreement with lattice data for AG> = 0.0035 GeV*. E.g.

T.(0) = 0.27; 0.19; 0.17 GeV for ny = 0,2, 3 respectively.

PACS: 12.38.Lg, 25.75.Nq

1. Phase transition at nonzero p and dynamics of
quark gluon plasma (QGP) is now of great interest be-
cause of impressive results of heavy ion experiments, see
[1] for a recent review and references. The topic calls
for a nonperturbative (NP) treatment of QCD degrees
of freedom at nonzero T and u, which is especially im-
portant for not very large T, u. Below we are using the
NP approach based on field correlator method (FCM)
[2], which was applied to nonzero T in [3, 4].

The main advantage of FCM is a natural explana-
tion and treatment of dynamics of confinement, as well
as the deconfinement transition [3, 4], in terms of Color
Electric (CE) DE(z), D¥(z) and Color Magnetic (CM)
Gaussian (quadratic in F%,) correlators D¥ (z), Dff (x).

The correlators DP(z) and D¥(z) ensure confine-
ment in the planes (4,7) and (i,k) respectively, i,k =

= 1 2,3 so that standard string temsion ¢? = ¢ =
f DE )d?z, and spatial string tension 0¥ = o, =
_1 s/ DH dzm Correlators DF, DE contain pertur-

batlve series, and DF plays an important role in that
it contributes to the modulus of the Polyakov line; at
T > T, one has [5]

1 [P
Lg;)d = ‘Fc<trPexng/0 A4dz4>‘ =

with the static QQ potential

¥é] r
Vi(r,T) = /0 dv(1 — vT) /0 ¢deDE(\/E + 7). (2)
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Deconfinement phase transition in this language is
the disappearance of D¥(z) (and o%) at T > T, while
Lgn)d and L ) (Lg’n) )®/4 are nonzero there?).

However the disappearance of DF(z) =
= Nic(tr E;(z)®(z,y)E;(y)) implies vanishing of a
part of vacuum energy density,

Blas) a \2 (11— %nf)
Evac = ((Fp,u) ) = - Gz’
16(18 32 \ (3)

DE(0) + DE(0) + DH(0) + DH(0) = %Gz

and G is the gluon condensate [6]. At T = 0, DF =
= DH DF = DE and for T > 0 both D#, DE do not
change till T ~ 2T, while DF disappears at T > T, [7]
in agreement with the deconfinement mechanism sug-
gested in [4].

Particle data [7] and analytic study [8] imply that
D{¥H) (z) ~ 0.2DE-H)(g), therefore one expects that
AGy; = GQ(T < Tc) — GQ(T > Tc) ~ %GQ(T <
< T.) ~ $G§', where G§' ~ 0.012 GeV* [6] (see [9] for
a recent gauge-string duality treatment of G5! yielding
Gt ~ (0.01 £ 0.002) GeV*).

This AG, taken as the change of free energy (pres-
sure) across the phase boundary will be our basic ele-
ment in finding the phase transition curve T.(u) below.

2)The subscript V in Lg n)d is to distinguish from L( ) nq calcu-
lated on the lattice with singlet free energy F Q(oo T) replac-
ing Vi(00,T) in (1). It is clear that L(F) contains all bound
states in addition to the ground state (selfenergy) Vi(oo,T'), hence
Fé 3 < V1. We shall ignore the difference in the first approxima-

tion in what follows and write Lgyng-
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To this end we introduce in the next section the NP
equation of state of QGP derived recently in [10], and
express T, (u) in terms of AG2 and Lgyng(Te)-

Taking for the latter the lattice or analytic value, one
obtains a set of curves T,(u) for ny = 0,2,3 depending
on the only parameter AG,. These resulting curves and
their end points T.(0), u.(0) are discussed in conclusion.

2. In the NP approach to the QGP in [10] one intro-
duces in the first approximation the interaction of sin-
gle quarks and gluons with the vacuum, which is called
the Single Line Approximation (SLA), leaving pair and
triple, etc... correlations to the next steps. As a result
one obtains in SLA the pressure PS"4 of quarks (and
antiquarks) and PS™A of gluons which are expressed
through Lgynq, namely [10]:

PSUA 4Ny X (—1)7H
— f pn
bg = ;14 = 7:2 Z nt Lgmd(ptgn)COSh?a
n=1
(4)
PSEA N2 _1) &1
Pyt = ;,4 = ZH adj> (5)
n=1
with
(n) _ nzmg meny\ 1 rnmg\2
" (1) = 5 K2( T )”1_1( T ) o
(6)

In (4), (5) it was assumed that T < 1/A =2 1GeV,
where A is the vacuum correlation length, e.g. DgE) (z) ~
~ e~12//2 hence powers of L?, see [10] for details.

With few percent accuracy one can replace the sum
in (5) by the first term, n = 1, and this form will be
used below for py;, while for p, this replacement is not
valid for large u/T, and one can use instead the form
equivalent to (4),

e () (257

where v = mg /T and

&, (a) = ®  24dz 1 ®)
= 0o VZ2F+rZeVAHioa 1’

Egs. (7), (5) define py, py; for all T, u and mg, which
is the current (pole) quark mass at the scale of the order
of T.

Using (4)—(8) we can define the pressure P in the
confined phase, and Pir in the deconfined phase, taking
into account that vacuum energy density in two phases

Evac and €2¢¢ respectively contributes to the free energy,

Mucema B MATP® Tom 85 BeIm. 11-12 2007

and hence |eyacl, [€%¢| to the pressure. Denoting the

hadron gas pressure in the confined phase as Phagron
one has

P; = |evac| + Phadron, Pt = |€%¢] + (pg1 + pg)T*. (9)
From Pi(T.) = Pu(T.) one obtains T.(u), neglecting
Phagron in the first approximation

1/4

_ (11— 2nys)AG,
T = (32(pgl(Tc) +pq(Tc))> - 10

In (10) enter only two parameters; AG> and
Leynd(Te) = exp(—k/Te), k = %Vl (00,T,;) = X
x Fgn(00,Te).

The latter can be found in 3 different ways: 1) from
the direct lattice measurements [11] of P}?Q ~ 0.5 GeV;

D=

2) from analytic calculation of D¥ in [8], which yields
Vi(oo, T < T.) ~ 6a,s(Mo)o /My ~ 0.5GeV with My =
= (0.8 — 1) GeV lowest gluelump mass [12]; 3) from lat-
tice calculations of DF at T > T, [7, 13], which accord-
ing to (2) yields V3 (00,T;) ~ 0.4 + 0.6 GeV. Therefore
one can fix Vi(oo,T.) = 0.50(5) GeV (k = 0.25GeV)
and this value is independent of n; [11]. As a result
T.(u) is a function of only AG, and for each value
of AG, one finds a set of curves for ny = 2,3,... We
choose AG; ~ %th and in Figure the curves com-
puted numerically from (10) for ny = 2,3 are shown
for AG> ~ 0.00341 GeV* and zero quark pole masses.

0:4....|....|....|....|....|....|.
0

01 02 03 04 05 0.6
p (GeV)

The phase transition curve 7.(u) from Eq.(10) (in GeV)
as function of quark chemical potential p (in GeV) for
ng = 2 (upper curve) and ny = 3 (lower curve) and
AG> = 0.0034 GeV*

The end points 7.(0) and u.(0) can be found an-
alytically e.g. for T.(u) with ~ 5% accuracy one has

(expanding (10) in pgi/p,)
9>
TZ(0)

T.(p) = T.(0) (1 -C ) , C =0.0110(3), (11)
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with

1 K
T~ 310 (14414 155,

70 _ (1= 3n)n?AG,)
N 384nf '

(12)

For AGs = 0.00341GeV* one obtains T,(0) =
= (0.27;0.19;0.17) GeV for ny = 0,2,3 respectively,
which agrees well with numerous lattice data, see [14]
for reviews. The value of C' = 0.011 is inside the scat-
tered set of lattice values [14].

Another end point, p.(0) can be found from the as-
ymptotics of (8), ®o(a — o) = ‘1—4 + "72a2 + ..., which
yields (for mg = 0) pc(0) = & + (48)*/4T®) and for the
same AG> as above one gets u.(0) = (0.63;0.58) GeV
for ny = 2,3 One can check, that the derivative in T,
dp.(T)/dT vanishes at T = 0.

3. The phase curve T, () in Figure is in reasonable
agreement with lattice data at least for p < 0.25GeV,
see [15] for review and references. Two important points
are to be discussed here: 1) order of transition and pos-
sible critical point 2) approximations and assumptions
of the present work.

1). The vacuum transition of our approach is evi-
dently of the first order at least in the leading (SLA)
approximation used for (10), and does not contain any
critical points. This is in agreement with lattice ny = 0
data, but the lattice results for ny = 2,3 depend on
masses, discretization and are not fully conclusive. The
softening of transition for ny > 0 in our approach is ex-
plained by the increasing role of Phadron(T) for ny > 0
near T,., which suppresses the specific heat and makes
the curve P(T) more smooth. In addition there is inter-
particle (e.g. gq and gqq) interaction disregarded above
in the first approximation which can soften the transi-
tion.

The chiral transition in our approach is caused by
the deconfinement, since both (gq) and f, are expressed
via DE(z) [16] and vanish together with it, in agreement
with lattice data, see e.g. [14]. The Polyakov loop is a
good (approximate) order parameter for ny = 0(ny > 0)
since at T < T, it is expressed via DF(z) and vanishes
(strongly decreases) (see Eq. (6) of [5]).

2). In our derivation of (10)—(12) it was assumed:
a) that the only important part of QGP dynamics is the
interaction with the NP vacuum —SLA; b) it is assumed
that vacuum fields do not depend on T, u in the phase
diagram, except at the phase boundary where the shift
AG> occurs; in particular neither AGs nor Lgyna(T:)
depend on p. The latter point is partly supported by
lattice data [17]. In general this picture of rigid vacuum

is based on the notion of the dilaton scale my of vacuum
fields, which can be associated with the 07T glueball
mass around 1.5 GeV and therefore for all external pa-
rameters (like g or T') much less than m4 vacuum fields
are fixed.

Another argument in favor of rigid vacuum is that all
dependence on p and ny does not appear in the lowest
order of 1/N, expansion, since it comes from the quark
loops. (Note that nevertheless T,.(0) differs strongly for
ng = 0 and ny = 2,3; even through AG> was kept
fixed, and this successful prediction of T,.(0) = 0.27 GeV
and 0.19 GeV respectively can be considered as another
support of our picture). Several things were not taken
into account. Quark masses are included trivially via
Eqgs.(6), (7) and this can be checked ws lattice data.
Phase transition near u.(0) can be complicated due to
strong ¢gq and gqq interaction, which is not taken into
account above and will be discussed elsewhere (see also
[10]); therefore the possibility of color superconductivity
is not commented here.
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