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We propose a nontrivial protocol to teleport a unknown N-qubit W-like state. The consumed resource
is only (IV — 1) shared ebits and 2(IN — 1) bits of classical communication, while the technique involves only
controlled-NOT gates and single-qubit measurements/operations. The rule for reconstruction of the desired
state at the receiving station is worked out explicitly in the most general case of an arbitrary N > 3. The

protocol is within the reach of present technologies.

PACS: 03.65.Ud, 03.67.—a, 03.67.Hk

Historically, the notion of entanglement was intro-
duced by Schrédinger in 1935 [1], long before the dawn
of the relatively young field of quantum information.
Nowadays, entanglement has been served as a use-
ful (in some cases unreplaceable) resource in quan-
tum information processing and quantum computing.
So, as a necessity, understanding and employing en-
tangled state become more and more important. Be-
sides well-understood bipartite entangled states, there
also exist multipartite entangled ones that, though less-
understood, play a very significant role in quantum net-
working. Two inequivalent representatives of multipar-
tite entangled states are the GHZ [2] and the W [3] states
which cannot be converted to each other by local uni-
tary operations and classical communication. Compared
with the GHZ states, less work has been done for the W
ones. Schemes for generation of W states are proposed in
[4] and applications of them are suggested in [5]. Espe-
cially, N-qubit W states (for N > 10) have been shown
to exhibit more robust violation of local realism, than
the GHZ ones [6]. The W states, by definition [3], are
maximally entangled states. In the case of nonmaximal
entanglement we refer to them as W-like states which are
also important in processing quantum information. For
example, remote symmetric entangling [7, 8] and per-
fect teleportation of a qubit [9] strictly require W-like
but not W states.

In this work we deal with teleportation of a unknown
N-qubit W-like state of the form

[Wn)12..8 =
= (21]10...0) + £2]01...0) + - - + 2x[00...1))12..x (1)
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using shared ebits in terms of EPR pairs as the quantum
channels. To our best knowledge, such a kind of task
has not been touched upon so far. As is well-known,
an arbitrarily general N-qubit state can always be tele-
ported by the universal protocol [10] using N ebits,
2N bits and N Bell measurements (BMs). However,
so much resource may be luxury for a particular state
that does not span the entire 2V-dimensional Hilbert
space. For example, a unknown N-qubit GHZ-like state
|GHZ N )12...n = (2|00...0) + 3|11...1))12...5 can be tele-
ported just via 1 ebit and 2 bits, independent of N [11].
Because the W-like state (1) lives in a subspace spanned
by |100)12N, |010)12N; ceey and |001)12N (i.e.,
the subspace dimension is N < 2V VN > 3), one expects
a cheaper cost to teleport it. Indeed, we shall show that
the required numbers of shared ebits and communicated
bits are only (N — 1) and 2(N — 1), respectively.

The main technical challenge of quantum telepor-
tation is commonly associated with BMs [12], whose
outcome is a two-qubit Bell state. To avoid BM sev-
eral modified teleportation schemes have been proposed
[13]. However, the schemes in [13] concern only the
continuous-variable system or high-Q cavity system.
So far, we have not seen teleportation scheme with-
out BM in the linear optics system. In [14] a way
was found to implement efficient quantum computa-
tion using only linear optics, photo-detectors and single-
photon sources. Subsequently, realization of photonic
controlled-NOT (CNOT) gate was reported experimen-
tally [15]. Motivated by that, we propose here a scheme
to teleport the state (1) using only CNOTs and sim-
ple single-qubit measurements, i.e., BMs are not neces-
sary.
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Suppose first that Alice is asked to teleport to her
remote Bob a 3-qubit W-like state

[W3)123 = (21/100) + 22|010) + 23]001))123, (2)

where |z1|? + |z2|2 + |z3|> = 1 with no information on an
individual z,,. At this aim, Alice and Bob need a priori
share 2 ebits in terms of 2 identical EPR pairs of the
form

1 .
E(|OO) +|11))a;B;, 1 =1,2, (3)

of which qubits 4; (B;) are in Alice’s (Bob’s) posses-
sion. The combined state |to) = |W3)123|B) 4,8, |B) 4,8,
of the total system can be expanded as

|B>AiBi =

1
|t0)= 5 X

x [1(/1000000)+|1000011)+1001100)+|1001111)) +
+25(]0100000)+/0100011)+/0101100)+{0101111))+
+ £3(]0010000) + [0010011) + [0011100) +
+ |0011111>)]123A1B1A2B2- (4)

Our protocol proceeds in several steps as follows.
S1. Alice performs 2 CNOT operations: a CNOT; 4,
on qubit-pair (1, 4;) and another CNOT34, on (2, 4),
where CNOT;;|a,b)i;; = |a,a @ b);; Va,b € {0,1} with
@ an addition mod 2. Accordingly, state |t) becomes
|t1) = CNOT324,CNOT}4,|to), which can be repre-
sented as

t) = 5 X ()

DN | =

x[|00) 4, 4, (1]10010)+22]01001)+25]00100)) 1238, B, +
(

+]01) 4, 4, (z1]10011)+25]|01000)+23|00101)) 1238, B, +
+]10) 4, 4, (21]10000)+22]|01011)+23|00110)) 1238, B, +
+|11>A1A2 (5121 |10001)+$2 |01010)+{L‘3 |00111))1233132]

S2. Alice measures qubits A;, As in the z-basis
{]0),]1)} with outcomes {I,m} = {0,0}, {0,1}, {1,0}
or {1,1} if she finds |00)A1A2; |01>A1A2, |10)A1A2 or
[11) 4, 4,, respectively.

S3. Alice publicly announces her measurement out-
come for Bob to carry out the right action. Namely,
if {{,m} = {0,0}, {0,1}, {1,0} or {1,1}, Bob ap-
plies (I® I)B1Bzv (I® ‘72)3132’ (‘72 ® I)Ble or (Uz ®
0z)B, B,, respectively, on his qubits (B;, Ba), where I
is the unity operator and o, . are the Pauli opera-
tors. As a consequence, the state of the remaining
five qubits 1, 2, 3, By and B transforms to [t} =
(21/10010) + £2]01001) + £3|00100)),555, g, Which can

also be rewritten in the z-basis {|0), |1)} of qubits 1,2,3
as

) = (%) x (6)

x [(|000 — |111))123(21|10) + 22|01) + z3|00)) B, B, +

+ (lﬁﬁi — |ii(]))123($1|10) + :E2|01) - .’E3|00))3132

+ (1010 — |iﬁi))123(m1|10) — 23|01) + 23(00)) B, B, +

+ (/011 — [100))123(21]10) — 2(01) — 23]00)) 5, B, ],
where [0) = (|0) + [1))/v2 and |T) = (|0) —[1))/v2.

S4. Alice and Bob independently do the following.
Alice measures her qubits 1,2,3 in the z-basis, while
Bob locally prepares an ancilla Bs in state |1) g, and per-
forms a CNOTp, g, on his qubits (B, B3) followed by
another CNOT g, g, on (B, B;). As a result, state |t2)
transforms to |t3) = CNOTpg, p,CNOTp,B,|t2), which
reads

1 3
t = B — X 7
t3) ( ﬁ) )
x[(|000—|111))123(x1|100)+x2|010)+x3|001)) B, B, B, +
+(|001—|110))123(21|100)+z2|010)—z3|001)) B, B, B, +
+(|ﬁiﬁ |iﬁi))123($1|100) $2|010)+£B3|001))313233
+(|011—|100))123(21]100)—25]010)—z3|001)) B, B, B, |-

S5. Alice publicly broadcasts her measurement
outcome for Bob to correctly reconstruct the state of
his qubits (B, B2, Bs) to be in the desired one. De-
note by {i, 4, k} Alice’s outcome corresponding to find-
ing [ijk)123. At first glance, it follows from Eq. (8)
that Bob will obtain, up to a global phase factor, the
desired state by acting on (Bj, B2, Bs) the operator
(0f ® 0 ® 0%)p,B,B,- Nevertheless, a closer look at
Eq. (8) verifies the simpler action as (0% ® ¢i®*) g, g,
i.e., Alice can publish just 2 bits i@ j and i ® k instead of
3 bits ¢, j and k of her full measurement outcomes, thus
reducing the overall classical communication cost. This
interesting feature, which is due to the specific struc-
ture of the W-like state, will be elucidated later when
we deal with the general case of an arbitrary number N
of qubits.

From above we see that to teleport a 3-qubit W-like
state we used only 2 ebits plus 4 bits (I, m,:®j,i®k)and
no necessity of BMs arose. This is clearly cheaper than
that for teleportation of an arbitrarily general 3-qubit
state which requires 3 ebits plus 6 bits as well as 3 BMs
[10].

To make clearer and most explicit the general rules
for the parties to follow we now turn to an arbitrary
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Schematic illustration of teleportation of a unknown N-qubit W-like state. A qubit is represented by a solid circle. The

arrows indicate classical communication: each arrow carries 1 bit. X(Z) denotes measurement in the z-basis (z-basis) with

the outcomes {si, sz, ...,sn} ({l1,l2,...,In—1})

N > 3, ie., we deal with the general N-qubit W-
like state of the form (1) with unknown coefficients
Ty1,Ta,- -+ ,TN, €xcept for Eﬁzl |z,|*? = 1. The par-
ticular structure of |Wy)12...ny allows us to represent it
compactly as

1
|WN)12---N: E Ja,laala2...aN a1,0q2,°" ",

@1,

aN)lz...N,

(8)

where a = Eﬁzl an and d,1 is the Kronecker sym-
bol. In general, Alice and Bob have to share in ad-
vance (N — 1) identical EPR pairs in the form (3) with

,an=0

i =1,2,---,N — 1. The total system state |Tp) =
|WN)12 N ® |B)A ;B; can be written as

1\ N1 1
|T0> = (E) Z Ja’laalw...al\, X

a1, ,an,b1r by —1=0

N-1
x (@ Iam,bm>mAm|bm>Bm) lan) An (9)

m=1

Our general protocol can be implemented as follows
(see Figure).

G1. Alice makes a CNOT,,4, on a qubit-pair
(m,Ap), for all m = 1,2,..., N — 1, transforming |T)
to |T1) = @~ _1 CNOT na,. | To), i-e.,
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N-1 1
) E 00,100 a5-ay X
bn_1=0

s QN ,b1 e,

=
(

ﬁ‘g’z o=

amaam @ by, )mAm|bm)Bm> |aN>AN =

() >

a1, ,an,l1-

00,100;10z-ay X

&\H

IN_1:0

N —
x X lam)m (® 1) 4;la; ® lj)B,-) : (10)
m=1 j=1
G2. Alice measures her qubits Aj, A4s,..., An_1
in the 2-basis with corresponding outcomes
{l1,l2,-+ ,In_1}, if she finds @} '|l;)a;, project-

ing |T1) onto

1 N N-1
!
IT1)= E 0a,1%1a5-an ® |am)m ® la; & 1;) B;
ay, - ,an=0 m=1 j=1
G3. Alice announces her measurement out-

comes {l;}, j = 1,2,..,,N — 1. Because of the
structure of |T]) and the property olla) = |a @ 1)

Va,l € {0,1}, Bob, after hearing Alice’s an-

nouncement, is able to cast |Ty) to |Tb) =
1 N N-1

Za1,---,a1v=0 00,1, az--an ®m:1 |am)m ®j:1 |a.7')BJ
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by acting o on his qubits Bj,forallj=1,2,..,N—1.
|T2) can also be rewritten in the z-basis of qubits {m}

w-(5)"

X >y 80,1001 a5ay (—1)2151 @ @aNEN 5

a1, ,aN,81,""",SN=0

N N-1
x ® 5 R las) s, (1)
m=1 j=1
- 1 .
where [3) = Y, (-1)*%|a)/v2 and the equality

(—1)nrsrtFansy = (_1)a181®®eNsN hag been used.

G4. Alice measures all her qubits {m} in the z-
basis with outcomes {s,} = {s1,82,---,8n} corre-
sponding to finding ®N_,|5,,)m, while Bob indepen-
dently prepares an ancilla By in state |1) g, and makes
a CNOTp,_,B, on qubits (By_1,By) followed by a
sequence of (N — 2) CNOTp;B, on (Bj, By) with
j=1,2,--- N — 2. After such actions of Alice and
Bob, state (11) becomes

1

ITs) = )

a181P---Pans
Ja,laalaz...(m(—l) 151 NN X

a1, ,an=0
N-1

X ® laj)B;lar @ ---®an-1©1)By. (12)
=1

From the constraint a = Eﬁ:l an = 1, which is due to

the specific structure of the W-like state, two equalities
can be derived. The first one is

a1 D---Pan_ 191 =an (13)
and the second one is

18190 - D anSN=81D(81 D $2)a2P- - -B(s1Dsn)an.

(14)
Substituting (13) and (14) into (12) yields
|T5) = (—=1)" x
1
X Z ‘Sa laa1az---a1v(_1)(81®82)a2®---®(51®8N)aNx
a1,--,an=0
N
x X lan) B..- (15)
n=1

G5. Alice broadcasts her measurement outcome in
terms of (N — 1) bits in the form {(s1 @ s2),(s1 @
83), -+, (81 ® sn)} and Bob, after hearing Alice’s an-
nouncement, applies a single-qubit operation %1%~ on

each of his qubit B, for alln = 2,3,--- , N. Because
ofla) = (—1)*%|a) Va,s € {0,1}, state (15) is converted
into

|Ta) = (=)™ x

<D

ai,,an=0

0a,1%;az-an |G1,02, ", GN) B, B,...By (16)

which, up to a global phase factor (—1)*1, is nothing
else but the desired N-qubit W-like state, now appears
at Bob’s location among the qubits By, Ba, ..., and By.
It is worthy emphasizing an interesting feature that di-
rectly from Eq. (15) Bob could simply apply o5~ on
each qubit B, for alln =1,2,--- , N, consuming thus
N bits from Alice. However, the equality (14) allows
one to safe 1 bit as detailed above.

In summary, we have presented a protocol to teleport
a unknown N-qubit W-like state with an arbitrary N >
3. Compared to the well-known universal protocol for
teleportation of a general N-qubit state which requires
N ebits plus 2N bits together with N BMs, our protocol
is more economical since it consumes just (IV — 1) ebits
and 2(N - 1) bits {ll, cee IN_1,81 D S2,- - ,81 D SN}.
It also has a technical advantage in the sense that no
BMs are necessary at all (at the expense of a sequence of
CNOTs at both sending and receiving stations). Though
teleportation protocols in QED can also be done without
BMs [13], in most cases their success probability cannot
exceed 50%. Here both unit success probability and unit
fidelity are achieved, even without BMs. Thus, our pro-
tocol would be of broad interest since it is economical
and feasible within current technologies.
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