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The leading contribution of instantons to the charge renormalization was
calculated. The 3 function was observed to increase rapidly in the region g =1,
in good agreement with the extrapolation of the results for strong coupling in
the lattice.
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The interpolation of the 8 function between the weak- and strong- coupling re-
gimes!? in the Yang-Mills [Su (V)] theory is of interest currently. Callan, Dashen,
and Gross® (CDG) have thus far proposed the only mechanism which allows one to
go outside the context of the conventional perturbation theory, if only for small g,
within the framework of a continual approach. Their analysis, however, contains
rather artificial components from the point of view of the standard theory: “in-
stanton medium” and “vacuum penetrability” u,,. are used for multiplicative field
and charge renormalization of the form
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where p, is the infrared cutoff of the instanton size p and 4 is the lattice constant of
the effective lattice theory with the coupling constant gy, (1/2). Arguments have
been given in favor of identification of p, ~a in order to obtain a single dimen-
sional CDG parameter. The extent to which Eq. (1) reflects the renormalization-
group properties, which are known in the context of perturbation theory, is not
clear, irrespective of the possibility of justifying such an equation.

We propose in this letter a different, more common and direct method of es-
timating the instanton contributions to the 8 function, i. e., analysis of the leading
radiative and quasi-classical corrections in the three- and two-point Green’s func-
tions in the Yang-Mills theory. We shall use the rarefied instanton gas approxima-
tion* (RGA) and ignore the (dipole) interactions between the instantons. The con-
tribution to the Green’s functions in the leading order in g2 in the instanton sector
comes only from the classical fields 47t ~0(1/g,) with a weight equal to the single-
instanton amplitude d (p) in the one-oop approximation®
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where g, is the renormalized charge and M is the Pauli-Willars regularization para-
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meter. Exponential cutoff corresponds to the hard core which accounts for the gas
rarefaction and which was proposed in Ref. 6;4 (B)=ay/p?, where ay = (by -4)/2
and p’is the average size of instantons, which is uniquely connected with the rare-
faction parameter q'; this parameter controls the small interaction between the two
(anti) instantons, Ix; -x, [*/p2%p% >a'. An estimate of the parameter ¢ ' from the
condition of positive action gives® ¢’ =0 (100).

Using the Fourier transform of the instanton in the singular gauge, we obtain an
unrenormalized, untruncated, three-point function at the symmetric point k;k;
=-k? 1-38/2 (in the Landau gauge)
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Here we have used the I'(®) notations for the bare, three-gluon vertex and
do’ b —4 »2 »12
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and also have taken into account the diverging part of the one-loop contribution of
the conventional perturbation theory. The leading contribution to the gluon pro-
pagation is calculated in the same manner.

The minimum-subtraction procedure, in which the Z constants contain only the
logarithmically diverging parts, can be used for renormalization of the Green’s func-
tions. The instanton contributions are also well defined after charge renormali-
zation, but the corresponding fi;, coincides with the conventional, one-oop ex-
pression.” We shall use a different renormalization scheme, i. e., the momentum-
subtraction scheme and require that the renormalized functions must be normalized
at a certain point k%> =y to the Born term with a substitution of the renormalized
coupling constant for the bare coupling constant. In this case Eq. (3) makes it
possible to determine the instanton contribution to the constants Z3 Z7!. Finally,
after taking into acount the renormalization constant of the propagator Z5, we have
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The instanton contribution to Z; is missing in Eq. (4), since it has been suppressed
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FIG. 1. The f function in SU(3) gauge theory with allowance for instanton contributions. 1. Pulse
subtraction circuit for different resolutions: (a) 2'=30, DA =0.0055;(b) 2" =114,5A
=0.0048; (c) a' =691, 5 Ay = 0.0040. II. CDG renormalization® [Eq. (1)] witha=5(@a’) (Ref. 6)
(ignoring instanton interaction). III. Pad€ extrapolation of the strong-coupling expansion in a
Euclidean lattice." The dashed curves represent the leading strong- and weak-coupling expansion
terms, respectively.

as 0(g3).
Using the expression for a single-loop running coupling constant g (u), we obtain
a § function as follows:

0
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The product p(a’) A appears here as a free parameter, which is constrained only by
the gas-rarefaction criterion mentioned above.

To compare the obtained results with the Euclidean-lattice calculations, we
must select an appropriate regularization scheme, which is equivalent to varying the
parameter A and the general constant Cy: Apyp /A =31.3 (Ref. 8), C&/'/ Clatt
=(Apy/ Aagt)"°N. Figure 1 illustrates the § function for several values of the para-
meter @', which was obtained in this manner. The curve with a’'= 114 is acceptable,
whereas ¢ = 30 lies in the region in which RGA applies to a lesser extent.®

Two distinguishing features can be pointed out: detachment from a one-loop 8
function occurs at g~ 0.9 almost independently of the degree of rarefaction of the
gas; the slope of the curve corresponds to the Pad€ extrapolation of the § function
for strong-coupling regime."

Our renormalization scheme conceptually is quite remote from the CDG pro-
cedure® whose result® is given in Fig. 1 for comparison. According to the compari-
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son (1), the gas rarefaction varies with the distance from the strong-coupling curve.
The instanton gas, nonetheless, is sufficiently rarefied to preclude any hope that
instanton interactions would guarantee a smooth transition to the strong-coupling
regime. We pointed out in another paper® that the curves must cross in the CDG
renormalization scheme. We have used this to determine the maximum space-time
occupied by instantons, f~0.01, placing our hope on another mechanism which
may suddenly come into effect. Our formulation, however, has no crossing, and the
rarefied gas, of course, describes the entire transitional region quite satisfactorily.
The question whether allowance for instanton interactions and for higher-order cor-
rections with respect to g2 will destroy the obtained attractive picture needs further
study.

We than}< D. V. Shirkov and 1% A. Vladimirov for useful remarks and also V. V.
Belokurov, E. Vitsorek, and B. Geier for discussions.
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