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A simple rule is given for the Lippman-Schwinger equation for the analytic
continuation of the integral equations with a Cauchy kernel on an unphysical
energy sheet E (Imy/'E <0). The result obtained in this paper makes it possible
to determine the virtual and resonance poles of the § matrix, and also the vertex
decay (fusion) functions of the corresponding states by using the standard

methods of calculating the bound states.

PACS numbers: 03.80. +r

One of the important problems of the theory of scattering and nuclear reactions
is the calculation of the resonant and virtual (antibound) states, which correspond to
the poles of the S matrix on an unphysical energy sheet £ of Riemann space (/_, Im
VE< 0). Recently, interest in this problem has increased dramatically because of
the large expansion of the range of physical problems in which resonances are the
principal subject of study. It is sufficient to point to the study of dibaryon reso-
nances," resonances in NA,*°NN,"8 and 2NN*'° systems, as well as resonances
in nuclear reactions,!! which are still of pressing interest. Unfortunately, the exist-
ing methods of finding the poles of the S matrix in /_ are cumbersome from a com-
putational point of view and, as a rule, do not guarantee the correctness of the re-
sults. The latter is due to the need for an analytic continuation in /_ of the various
physical quantities, which are given numerically for a number of points of the phys-
ical sheet £ (I, , Im/E>0). For example, the method of analytic continuation
with respect to the coupling constant A, which has obvious advantages over other
approximate methods,!! cannot be used effectively for finding virtual states and
resonances far from the threshold. To accomplish this, it is necessary to calculate
first the energies of the bound states for a large number of points in A. An expan-
sion of the effective-radius theory'? is usually used in the near-threshold region.
Resonances close to the physical region are found by calculating the Regge trajec-
tories.!> The algebraic relationship between the values of the # matrix at the upper
(z+) and lower (z_) shores of the right-hand cut, which can be obtained from the Low
equation and the unitarity of the S matrix, is known.'* However, to find the poles
of the § matrix by means of the analytic continuation of this relationship, we need
to know the # matrix on the energy surface in the entire £ region in I, , correspond-
ing to the E region in I_ where the pole is to be found.

In this paper we propose the most direct method of finding the poles of the §
matrix in /_, which consists of a rigorous analytic continuation of the integral equa-
tions of scattering theory, as a result of which the problem becomes completely ana-
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logous to the calculation of the energies of bound states. We shall illustrate this
method by using the Lippman-Schwinger (LS) equation for the ¢ matrix outside the
energy surface with a potential ¥ (r), which is written in the form (z in /)

Vi@, k)t (ks q”,z)

ty(q q"y2)=Vi(gq" ) +4n | maS—EY oW k2 dk, (1)
where
Vita, ¢°) = Qa®)"Y [y (qr)V(r)i (q"r)r?dr, @)

o

j1 (x) is a spherical Bessel function, u is the reduced mass, g and g’ are the initial and
final momenta, and / is the orbital momentum which is omitted below to shorten the
notation. For real z-E we have

v (q k)ti(k’ CI'.E)

t s ’,'E =V 3 ’ 4 k2dk’ ’
(0 a,E) (@ q°) + rr(_)f E— k%24 +ie (e » 0+) v

where ¢, and £_ are the values of the r matrix at the upper and lower shores of the
right-hand cut in the complex F plane. In order to find the LS equation in I_, we
must analytically continue the integral term in Eq. (1). To do this, we make use of
the known method of finding the regular branch of a function that is expressed as a
Cauchy integral, which originates from the initial branch of this multivalued func-
tion when the branch point (end of the integration) is bypassed along a closed con-
tour.!® The form of the integration contour is unimportant. For our problem we
write the principal branch in the form

1 % 6(d
‘D(.Z)_=,»2m,» J [__i _Z, zin I 4)

where ¢ satisfies the Holder condition everywhere along the integration line. Using
the well-known Sokhotskil formulas

1 P

vl A S ®

where P denotes the principal Cauchy integral, we can see that the analytic continua-
tion of @ (z) from region I, to region I_ is the function

®_(z) = ®(z) - ¢ (2). (6)

Analytic continuation by means of Eq. (6) is valid for the z region in which the ¢
function is holomorphic. In order to use Eq. (6) for the analytic continuation of
the integral in Eq. (1), we must remove the dependence of the ¢ matrix on z outside
the integral sign. To accomplish this, we expand #(k, ¢', z) in a series in powers of
\/z within a small neighborhood of the point z=0. The specific form of the series is
unimportant (it can be a Taylor, Laurent, or Mittag-Leffler series). To be specific,
we write a Taylor series in the region where the 7 function is analytic with respect to
k:
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t(hy, q",2) =% C_(k q") (VZ)" (M

n=7y
Using Eq. (7) we can write the integral in the LS equation (1) in the region of uni-
form convergence of the series (7) in the form

* Vig, k)t(k, q%,2)
oy s

= Vg, k) Cn(k, q°)

B2dk = 2 (/)"
Ve z — k2/2

n=20 0

K2dk.  (8)

After replacement of the variable (¢ = k2 /2u), we obtain integrals of the form (4) as
the coefficients of the series (8). By analytically continuing each term of the series
(8) with the aid of Eq. (6) and summing the result in accordance with Eq. (7), we
obtain an equation of the form (z in 7_)

’ ’ = V( s k)t (k’ LI', ——t
t (4. 9,2)= V(2 q") +4n7 [ — LAy ’.Z) k3dk + i8a2u\Ruz V
, B

x (@ uz)e_ (VIiz,q" 2), ©)

which is the sought-for analytic continuation of the LS equation to the unphysical
sheet. It is easy to prove the validity of the derivation of Eq. (9) by examining any
potential that makes it possible to solve Eq. (1) [and consequently Eq. (9)] in analy-
tic form. It is easy to show (for example, by using the approximation of the poten-
tial by the Bateman method with any number of cuts) that for a potential written in
the form of an arbitrary sum of separable terms the solution of Eq. (9) coincides
with the analytic continuation of the solution of Eq. (1) using Eq. (6). The analytic
continuation of the solution of the LS equation (1), which was found by the Bate-
man method, was used'® to determine the virtua! state of the neutron-proton pair
in the 1g, state. A more suitable form of the LS equation on the unphysical sheet
can be obtained from Eq. (9) if t_(v/2uz, q', z) is expressed using this equation. In
this case the LS equation in /_ acquires the form of the usual Fredholm integral
equation

oy Vg, k) t_\_ (k, Q: p2/2u) i

t_(q, q',‘p2/2u )= V(q, q') + 877'# f ] 72 *dk
0 p -

Vip, k) t_(k, ¢ ,p% 124)
p2 - L2

+ F(q, p) [V(p, q’) + 8au | k2dk] . (10)

where
18 ﬂzupV(q, p)

11
1-i8n2upVip, p) ()

F(‘I!P) =

p =\/§72-1's the arithmetic value of the root. It is easy to see from Eq. (9) for £_(p,
q', p*/2u) that the zero of the denominator in Eq. (1) is not a pole of the # matrix.
By reducing Eq. (10) to an algebraic system of equations by means of some quadra-
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ture, we can find all the poles of ¢ as a function of z in I, without solving Eq. (10),
from the condition that the determinant of the corresponding system of algebraic
equations is equal to zero in exactly the same way as the energies of the bound
states are determined. We did not use the unitariy condition of the S matrix in the
derivation of Egs. (9) and (10); therefore, they can also be used formally for a com-
plex potential (it must be remembered, however, that the very nature of the discon-
tinuity of the scattering amplitude at the right-hand cut is closely related to the
unitarity relation which is used, for example, in deriving the dispersion relations).
The equation for the vertex function of the decay of the resonant or virtual state
g(q) follows immediately from Eq. (10). Near the corresponding pole at z=z, we
can write

g(q) g(q”)

Z -2
[

t_(q»q°5t) = (12)
Substituting Eq. (12) in Eq. (10) and dropping the terms that do not contain poles,
we obtain the equation

* Vg, k F(q, vV , k)]
e(a) = 4 [ (q )z+ “(qk;;z)u (pys k)

o

g(k) k* dk. (13)

Just as for a bound state, this equation is homogeneous; therefore, we must normal-
ize g (q) by using the equality (12)

g¥(q) = im (z-2z )t(q, q,2) =7(q.q) 2z, )» (14)
where
(9, 4 2) = (2~ z_)t(q, q, z). (15)

Thus, to determine the normalization of g it is sufficient to solve Eq. (10) at several
points z #zy on the straight line passing through the point z,, and then find 7 (q, q,
Z,) and, consequently, g? from Eq. (14) by means of interpolation.

In conclusion, we note that the method proposed in this paper for analytic con-
tinuation of the integral equations on the unphysical sheet is a multichannel pro-
blem, which makes it possible to derive the energies on any sheet of the Riemann
surface. This applies to systems of LS equations, equations of the dispersion method,
and to the Fadeev equations, which will be examined in a separate paper.
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