Calculation of exchange integrals in solid *He
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The first two terms in the expansion of the logarithm of the exchange integral in
powers of the lattice constant of a quantum *He crystal are calculated in the
semiclassical approximation. Numerical calculations are carried out for the

exchange of two, three, and four neighboring atoms.

PACS numbers: 67.80.Cx

In this letter we shall carry out a microscopic calculation of certain exchange in-
tegrals in order to determine how many-particle exchange processes® affect the > He
Hamiltonian. The method of Ref. 2 is used to calculate the exchange integrals for
three processes: the exchange of two nearest neighbors, J,,,; the exchange of three
atoms, J;; and the planar exchange of four atoms in the bee phase of 3 He, K P

For the calculations we use a semiclassical approximation of ¥(X), the wave
function of the N-atom quantum crystal, where X is a 3N-dimensional vector specify-
ing the coordinates of all the atoms.?> The exchange process in a quantum crystal
may be summarized as follows: A system which is initially near the point X=X,
which is a minimum of the potential energy U(X), undergoes a transition (tunnels) to
the point X, , which is another minimum of the potential energy. The semiclassical
approximation requires calculation of the tunneling trajectory X(¥) from X, to X,
from the principle of least action. The point X, differs from X, in that the coordin-
ates of two, three, or four atoms have been interchanged, but in a calculation along
the tunneling trajectory it is necessary to consider the displacements of other lattice

588 0021-3640/81/11588-04$00.60 © 1981 American Institute of Physics 588



atoms also. In other words, the problem of calculating the tunneling trajectory is a
many-body problem.

Another difficulty is that in ® He the potential energy U(X) cannot be written as
the simple sum of the binary interaction potential v(r) over all pairs of atoms. The
contribution of each pair to U(X) must be averaged over the zero-point vibrations.
For the potential energy we use the approximation

M
Ux) = 7 %wz(k)éz(k) + U, (X). 1

The first term is the lattice energy in the harmonic approximation; the sum is over
the variable k, which includes the wave vector and the polarization of the phonon;
and {(k) and w(k) are the amplitude and frequency of the phonons. In calculating
w(k) we use the approximation of an elastic and isotropic medium (the Debye mod-
el). The velocity of sound is determined from experimental data for the Debye tem-
perature and the elastic moduli.> The second term in (1) is an anharmonic increment
U,(X). 1tisimportant to note that U, is determined solely by a sum over a small
number of atoms—those for which the displacement cannot be assumed small. We
use an interpolation formula in the calculation of U,. In this procedure the contri-
bution of a particular pair of atoms to U, is zero if the interatomic distance is ap-
proximately equal to the equilibrium value, while the contribution is equal to the
repulsive part of the Lennard-Jones potential if the atoms move very close together.

In the calculation of the tunneling trajectory X(¢) the effective duration of the
anharmonic effects, 7, is small in comparison with the characteristic times for har-
monic oscillations, wp7<K 1, because of the rapid increase in the interatomic poten-
tial as the atoms move close together. Consequently, a perturbation for the atomic
displacement does not manage to propagate through the crystal until the tunneling
trajectory intersects the point 7= 0, which is chosen halfway along the trajectory.
The tunneling trajectory is sought by a “firing” method. Two trajectories X(7) and
X'(r) are chosen in such a manner that at #= -0 we have X(£)= X, and X'(1)=X,.
At the time £=0 the two trajectories join smoothly:

X(0) = X7(0), X(0) = - X°(0). @

The “firing” process can be arranged in such a manner that joining condition (2) is
checked for only those atoms for which the anharmonic effects must be taken into
account.

We can transform to dimensionless displacements in (1) by expressing distances
in the units of the lattice constant & (in the bee crystal we label an edge of the cube
as g). If the dimensionless displacement is fixed, then U, in (1), which is determined
by the repulsive part of the Lennard-Jones potential, varies « 2 ~'*, Experiments
show that the characteristic frequencies in helium vary approximately « =7 so that
the harmonic term in (1) also varies « ™2, Itis thus possible to calculate the tunnel-
ing trajectory and the action along this trajectory for only a single value of ¢ and
then scale the results ot other densities. Using the results of Ref. 2, we can write the
following expression for the exchange integral:

InjJ| =-S5 y%(s/a)5-95lna +1nd, . ®3)
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FIG. 1. a—The Heisenberg constant v;; b—exchange integrals, as functions of the molar volume V'
(in cubic centimeters per mole). Curves 1, 2, and 3 correspond to binary, ternary, and quaternary
exchange, respectively; curve 4 represents the experimental data.?

The parameter v, =4eM(ol/f)?, which arises in the transformation to dimensionless
units (h=a=M=1), is a measure of the quantum properties of the crystal,
M=5X10"% g;and €=10.2K, 6=2.56 A, and /=12 are the parameters of the re-
pulsive part of the Lennard-Jones potential. Numerical calculations yield values of
3.81,4.08, and 3.86 for S, for the exchange of two, three, and four atoms, respec-
tively.

Figure 1a shows the magnetic Griineisen constant y;=9(In}J {)/d(In¥) for the
three exchange processes as a function of the molar volume V. The Griineisen con-
stant, determined from measurements of the helium pressure in a magnetic field,’
varies from 17.5 to to 19.2 as the volume changes from 24 to 22 cm®/mole. If we as-
sume that the thermodynamic properties are determined primarily by J,,, and K,
then the discrepancy between theory and experiment is of the order of 10%. To com-
pare the exchange integrals with experiment, we can estimate the coefficient (4) of
the exponential function in the harmonic approximation.? In order of magnitude,

ME K 34
A = znea<——) (t)D ) (4)

w
where z is the number of equivalent tunneling paths from X, to X, and 7, is the
numiber of atoms that are exchanged. Figure 1b shows the exchange integrals as func-
tions of the molar volume. All three exchange integrals are comparable in magnitude,
confirming that many-body exchange must be incorporated in the Heisenberg Hamil-
tonian. Curve 4 corresponds to an analysis of data for the * He magnetic pressure
according to the Heisenberg model with only nearest neighbors being taken into ac-
count. If many-particle exchange processes are taken into account in the analysis of
the experimental data, then curve 4 wilt drop to a lower level.

1. A. Landesman, J, Phys, (Paris) Colloq. 39, C6-1305 (1978).
2.V. V. Avilov and S. V. Iordanskii, Zh, Eksp. Teor. Fiz. 69, 1338 (1975) [Sov. Phys, JETP 42,

590 JETP Lett, Vol. 33, No. 11, 5 June 1981 V. V. Avilov and S. V. lordanskii 590



683 (1975)].
3. S. B. Trickey, W. P. Kirk, and E. D. Adams, Rev. Mod. Phys. 44, 668 (1977) (Russ. transl. in:
Kvantovye kristally, M., 1975).

Translated by Dave Parsons
Edited by S. J, Amoretty





