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Single crystals of Co,sZn,F, have been grown, and their magnetic properties
have been studied at magnetic fields from O to 60 kOe and at temperatures from
1.7 t0 20 K. At T < T, = 12.5+0.5 K these crystals have the properties of a

uniaxial antoferromagnet with a strong Dzyaloshinskii interaction. The

perpendicular magnetic susceptibility has an unusual temperature dependence in

weak magnetic fields.

PACS numbers: 75.30.Cr, 75.30.Kz, 75.50.Ee

Single crystals of CoF,, of D}} tetragonal symmetry, belong to the group of
well-known “easy-axis” antiferromagnets exhibiting a Dzyaloshinki] interaction.!™
In a study of the magnetic properties of Mn,_,Zn,F, single crystals, F oner® showed
that the replacement of the magnetic Mn*™ ion in a tetragonal crystal lattice by a
nonmagnetic Zn*" ion lowers the temperature of the transition to the ordered state,
Ty, and reduces the magnetic field of the phase transition which results from a flip-
ping of the magnetic moments of the Mn** sublattice. It seemed interesting to study
the magnetic properties and phase transitions in the system Co,_,Zn,F,, in which
some of the magnetic Co'* ions of pure CoF, crystals are replaced by nonmagnetic
Zn*" ions.

The Co;.,Zn,F, (x =0.5) samples were synthesized from anhydrous CoF, and
ZnF, which had been melted beforehand in an atmosphere of HF. The resulting
samples were then used to grow single crystals in a helium atmosphere, in the appara-
tus described in Ref. 7. The magnetic properties were measured with a vibrating-
sample magnetometer® at temperatures from 1.7 to 20 K and at magnetic fields from
0 to 60 kOe.

Figure 1 shows the dependence of the magnetic moment on the applied magne-
tic field, H, for the cases in which this field is oriented along the {100] binary axis
(curve 1), along the [110] binary axis (curve 2), and along the [001] tetragonal axis
(curve 3). It can be seen from Fig. 1 that with H |l [100] and # <10 kQe the
field dependence M (H) is described by M (H) =xFH , where xF=(13+0.1) X 107"
emu/mole. AsH is increased, the behavior M () becomes nonlinear, and at H >335
kOe it can be described by M (H)=o0p +X, H, where 6 =(2.5 £0.2) X 10* emu/mole
and x, =(5.220.3) X 107 emu/mole. The value of o, was found by extrapolating
the linear function M () from strong fields # >35 kQe, to H=0. With H || [110]
and H <10 kOe, the magnetic moment is a linear function of the field, described by
M(H)=y*H where x*=(1.1+0.2) X 10™! emu/mole. With increasing H, the de-
pendence M (H) becomes nonlinear, and at H > 35 kQOe it can be described by M (H)
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FIG. 1. Dependence of the magnetic moment on the applied magnetic field in Co, ;Zn, F,.
1-H 11[100];2-H Ii [110];3—H 11 {001].

=05+ x1* H, where 0% =(1.8+0.2) X 10° emu/mole and x**=(4.0+0.3)X 107
emu/mole. In a magnetic field oriented along the [001] tetragonal axis in weak mag-
netic fields, # <5 kOe, we find M (H) =x,, H, where x;=(1.2£0.2) X 102 emu/
mole. In fields 5 <H <30 kOe, the slope of the M (H) curve increases smoothly,

and at A >>30 kQe the curve can be described by M (H)=xH, where x=(3.820.2)

X 1072 emu/mole.

Figure 2 shows the temperature dependence of the magnetic moment op for the
case H I} [100]. Figure 3 shows the temperature dependence of the magnetic sus-
ceptibility in weak magnetic fields (H <5 kOe) for H Il [001] [curve 1, x,(T) and
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FIG. 2. Temperature dependence of the FIG. 3. Temperature dependence of the mag-
ferromagnetic moment o (7). netic susceptibilities. 1-—-weak x||(7) in magnetic
fields (H < 5 kOe) with H || [001]; 3—x, *(T) in
weak magnetic fields, H | {100]; 2-x(7) in
strong magnetic fields (/7 > 40 kOe) with H||
{0017 ; x4(T) in strong magnetic fields, H ||
[100].
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for H |l {100] [curve 3, x}(T)] and in strong magnetic fields (H >40 kOe) for H ||
[001] [curve 2, x(T)] and for H Il [100] {curve 4, x, (T)]. The temperature of
the phase transition to the ordered state is found from the disappearance of the mag-
netic moment op (Fig. 2) and from the maximum of the susceptibility x,(7) in
weak magnetic fields (Fig. 3) to be Ty =12.5+0.5 K.

It follows from the temperature dependence of the susceptibility that in the ab-
sence of a magnetic field the Co;_.Zn,F, single crystals convert to a magnetically
ordered state at a temperature T <7 =12.5%0.5 K. This state is analogous to one
with an antiferromagnetic vector L oriented along the tetragonal axis. When the
field H along the [100] or [110] binary axes is strengthened, there is a phase transi-
tion from a purely antiferromagnetic state to one with a slight ferromagnetism, op.
The phase transition to the slightly ferromagnetic state occurs in a field HL ~30
kOe. This value was determined from the intersection of the linear plots of M (H)
for H<20 kOe and H >40 kQe. A strengthening of the field H when oriented along
the [001] tetragonal axis is accompanied by a phase transition, probably involving
a flipping of the magnetic moments of the sublattices. This transition occurs in
fields 10 kOe <H <HZ ~32 kOe and is related to a rotation of the antiferromagne-
tic vector L. The thermodynamic theory of weak ferromagnetism developed by
Dzyaloshinskff1 was used in Refs. 4 and 9 to derive expressions relating the magnetic
fields for the phase transitions, HZ for H || [100] and H¥ for H Il [001], with the
effective fields of various interactions in the crystal. From these relations we find
that AL and HY are related by

I X 2
HyH! - HD - (1 - _o_|> wll , (D
X

where Hp =op [y, is the Dzyaloshinskir interaction, and x,; and x| are the trans-
verse and longitudinal susceptibilities. Equation (1) holds quite well for a variety of
antiferromagnetic crystals. In the our case of a dilute antiferromagnet with a random
distribution of interacting magnetic ions, it is not clear whether the thermodynamic
potential of Ref. 1 and expression (1) can be used for calculations, but when we sub-
stitute in (1) the magnetic fields found from Fig. 1 (HL =30+1 kOe, HY=32+1
kOe,Hp =48 £4 kOe) and 1 -x)/x, =0.77 we see that this relation holds within
~10%. It should be pointed out that the magnetic field HZ is determined here from
the point at which the linear dependence M (H) =xH sets in.*°

It can be seen from Figs. 2 and 3 that the temperature dependence observed ex-
perimentally for the ferromagnetic moment, op5(7’), and those for the magnetic sus-
ceptibilities, x| (7), are the same as in an ordinary antiferromagnet. On the other
hand, the increase in the susceptibility xF(7) in weak magnetic fields, 2 <<H <5 kQe,
in the case H Il [100] differs from that of ordinary antiferromagnets. This depen-
dence is analogous to that which we found in Ref. 6 for x} in Mn;_,Zn,F, in weak
magnetic fields (H <3 kQe) with H [I [100].

In summary, the replacement of the magnetic Co*" ion by the nonmagnetic
Zn"* ion in the system Cog 5Zng s F» reduces Ty (the temperature of the phase
transition to the ordered state),Hﬁ (the magnetic field of the phase transition from
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the antiferromagnetic state to a state with a slight ferromagnetism), and # (the
field of the transition involving a flipping of the magnetic moments of the Co++ sub-
lattices) to values significantly lower than in pute CoF,. The magnetic moment op,
on the other hand, remains constant, if we take into account the relative concentra-
tion of Co* " jons. The nonlinear increase in the susceptibility x§F(7") with the tem-
perature in weak fields H Il [100] is difficult to explain on the basis of a purely anti-
ferromagnetic model, as in Ref. 6. It should be assumed that this temperature depen-
dence of the susceptibility results from a random distribution of magnetic Co’ " jons
in the tetragonal lattice.
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