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A theoretical explanation of multipulse spectra, which were observed for the
first time [R. A. Marino and S. M. Klainer, J. Chem. Phys. 67, 3388 (1977); D.
Ya. Osokin, Phys. Stat. Sol. (b) 102, 681 (1981)] in a nuclear quadrupole

resonance, is given.

PACS numbers: 76.60.Gv

Multipulse NMR methods have been developed extensively in recent years.
These methods have been highly successful in obtaining high-resolution spectra in
solids and in studying molecular motion. The multipulse spin-locking method® was
used in Refs. 1 and 2 to observe the quadrupole resonance of **N nuclei. An echo

sequence, which attenuates after ~1 sec, i.e., in a time much greater than the charac-

teristic time T, of dipole-dipole interactions, has been detected. This made it pos-
sible to increase substantially the effective sensitivity of the experiment.’

The mechanism for the formation of an echo was explained in terms of a simple
model with two spins.* This approach, however, cannot describe the behavior of a
macroscopic spin system for large times, in which the many-spin processes play an
important role.’

In this letter we analyze theoretically the dynamics of a spin system with a

strong quadrupole interaction under the conditions of multipulse spin locking at a
time > T, , using the canonical-transformation method.®

We shall analyze a crystal sample containing nuclei with spin 1, in which the
electric-field gradients are identical in all the nuclei. The quadrupole-interaction
Hamiltonian
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where p, q, r=x, y, z, or their cyclic permutation, can be written in the form*
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Suppose that the system is irradiated by pulses at a frequency wy, =-wg (1-n/3).
The interaction with an rf field has the form
A

H ~Tnfiessine, t, @)

where n is the direction of the axis of the rf coil, and f{r) is the impulse function.”
Using Eq. (3) and the relation [I pis Iq 3-I; 3} =0, we can easily obtain the secular
part of 5 with respect to 9?’Q (Ref. 4),

A
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Here 0 is the angle between the direction n and the axis y. The secular part of the
dipole-dipole interaction with respect to 9?’9 can be represented in the form
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Herea§=1-3cos’y5, and pZ is the angle between r; and the p axis. In the inter-
action representatlon with respect to 9?’Q the Hamiltonians of the problem have the
form

'?((t) - 7{fec + 7(5;c )

(here the rapidly oscillating nonsecular terms have been dropped).

If the pulse duration is ignored, then the impulse function can be represented as
follows:

fle) =$,8(t) + $% &8(r+2kr -1). ®)

k=0
It is convenient to represent g5 in the form

158 JETP Lett, Vol. 34, No. 4, 20 August 1981 B. N. Provotorov and A, K. Khitrin 158



4 2 A

R N TR T CREEY (N ©)

n=-=2

The initial density matrix 1-q, Q?Q becomes?
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after the first preparatory pulse. Further evolution of the density matrix is deter-
mined by the Hamiltonian

"
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» d *
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It can be seen” from Eq. (11) that a quasiequilibrium
A 4
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is established in the system during the time of the order of T,. We can easily see,
taking Eq. S into account, that the amplitude of the observed signal at times of ~T,
is proportional to cosf sin (¢o cosf). At times ¢> T, y =const, and « and § vary
slowly under the influence of the dipole-dipole interaction modulated by tf pulses.

To determine the rate of this variation, we must perform a canonical transforma-
tion of the equation for the density matrix.® In the transformations for our prob-
lem, which were used in Ref, 5, we must substitute only the operators (2) for the
spin-projection operators fp (p=x,y,2). Switching to the coordinate system with
an effective field”? w, =¢cosf/27, and after canonical transformations, we can see
that the evolution of the density matrix is determined by the equation

d A , A : )
_i =_i'[-wefy’2 +7»{§ + 2 (e‘"'"”‘/r R;+ e-""”‘/"R;,"), p1l
dt nym (13)

A An An
[Iy,2 ’ Rm] =nR m?

where the sum over n and m must tcke into account the nearest resonance processes
which are determined by the condition

no, = mn/r, (14)

~
n . . : .
and the resonance term R}, causes a spin reversal n, which is accompanied by a
quantum absorption m of frequency n/7.
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The envelope of the attenuating echo sequence is determined by the decrease
of the value a(¢) with time, and its temporal variation can be calculated with the
help of kinetic equations for a(¢) and §(z), which were used in Ref. 7 and which
take into account the effect of all the essential resonances. For a single crystal the
envelope depends exponentially on time, and the damping factor is equal to ~7*
for ¢ cos® =72 and 7° for ¢ cosd =2n/5 and 7/3.

An approximate calculation for a powder showed that the characteristic time
of the envelope depends on 7 as 7~%. These conclusions are in satisfactory agreement
with the experimental data for an NaNO, powder, given in Ref. 1 (the experiment
and calculation were performed for ¢ =7/2).

The authors thank G. E. Karnaukh and V. L. Turovets for their help with our
work.
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