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Self-similar solutions, which describe the distribution of nonequilibrium phonon
temperature due to laser excitation of electron-hole plasma, are obtained.

PACS numbers: 72.30. + q, 71.36. + ¢

A large number of nonequilibrium phonons with a frequency of the order of the
Debye frequency wp are produced as a result of the generation of electron-hole
plasma in a semiconductor by a laser beam during thermalization and recombination
of the carriers in the absorption layer. The manner in which these phonons propa-
gate in the bulk of a crystal is important in many physical phenomena.

The spectral evolution of the phonon distribution, which occurs because of
three-phonon decay and fusion processes, is a characteristic feature of the propaga-
tion of phonons under these conditions. This evolution, which occurs simultaneous-
ly with the spatial diffusion due to scattering by the defects, affects the diffusion
strongly, since the diffusion coefficient D depends on the frequency. On the other
hand, the diffusion controls the phonon-occupation numbers n and therefore influ-
ences the three-phonon processes: if n<<1, there is a spontaneous decay;if n>>1,
then the fusion will dominate;if, however, n= 1, then the decay and fusion will
balance out and a Planck distribution will be established.

If the pumping is weak, the layer occupied by the phonons will expand faster
during the diffusion than the number of phonons produced due to the decay. Asa
result, the occupation numbers decrease and the temperature cannot be stabilized.*?
In this letter we study another propagation regime which occurs during a strong
pumping. The occupation numbers in this case reaches a value of =1 before the
phonons leave the absorption layer, and the phonon temperature T is established in
the layer. If the temperature Ty is sufficiently low and the transfer processes are un-
essential, then, in contrast with the standard thermal conductivity, the energy flux w
will be determined by the cold phonons with w =~ ¢ <K T, rather than by the thermal
phonons with w = T'; the narrow point of the thermal conductivity, which is nonlocal,
is the spectral energy transfer from the region w =T, in which it is “stored,” to the
region w = ¢ in which it is “transported” (Refs. 3 and 4).

The “initial” phonon temperature Ty is determined from the balance €(T)
d=P;here e(T) is the thermal energy of the lattice in 1 cm®, d is the absorption
depth, and P is the energy absorbed in 1 cm? of the surface. The time for establish-
ment of the temperature T is 7o =7(Tp), where 7(w) is the time of the three-phonon
processes. During this time the phonons diffuse to a depth lo =1(t), where I(w)
= [D(w)7(w)] /%, The temperature is therefore established if lo <<d, which gives
P>1073 Jjem? for typical parameters for the semiconductors.
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The equation, which determines the distribution of the phonon temperature, can
be derived in the following way. Assuming that T is a known function of » and ¢, we
shall determine the distribution of the cold phonons from the equation
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where 7 is the absorption time of a nonequilibrium cold phonon of frequency w by
the Planck distribution with the temperature T. We then calculate the energy flux

w= [dople)o[~D(w)yn), 2

where p is the density of states. Substituting w in the form of a functional of T in
the energy conservation law

de/dt + divw=0, 3)

we obtain the sought-for equation.
If T<< wp and the scattering by defects is a Rayleigh scattering, then

D(m)’\’w_4, l/;NwT4, PN(O-Z, 6NT4,

and Egs. (1)~(3) have self-similar solutions from which all the physical parameters

of the problem can be excluded. We shall determine the temperature 7w by the con-
dition P=¢(T) I(T-) and introduce the dimensionless variablesZ =2/l , t =#/Tes
and @ =w/Tw , where lo, =1 Tw and 7. =7(T). It is easy to check that T =T
(lo/d)* << Ty, so that I, >>1y and 7 >>7¢. If we substitute in Egs. (1)-(3)

n (o 2,0 ) =T Mg (L, p) (r=1/21), @
TCz, t) =T, t# f(L) (p =5/21), )

with self-similar variables

n=ai®, (=3B (a<=4/21, 8=20/2]), ©

then the equations obtained for g and f will not have any parameters, and hence the
most important results can be obtained without knowing the explicit form of these
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FIG. 1. Time dependence of the depth of the “heated” layer.
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FIG. 2. Time dependence of the temperature (of the average phonon frequency) and of the fre-
quency of phonons that transfer the energy.

functions. Thus the energy of this system of equations is concentrated in the region
which is determined by the condition ¢ = 1, i.e., for z~L. (¢/7.)?*. The charac-
teristic temperature in this region is T~ Tw (¢/7)>*'. The frequency of phonons
that transfer the energy is determined by the condition n=1,1i.e., O~ Te (t/7.) 2.
These relations include the time dependence of the main physical parameters (Figs. 1
and 2) and the pumping power (at l. and 7« ).

The self-similar solution of Egs. (4) and (5) can be obtained for these times #,
when the characteristic temperature, which is determined from (5), is of the order of
T,. It is easy to see that £,~7o (d/lo)*° and to verify that 7o <<ty <<T.. At the
time ¢, which is characteristic for the solution of (5), zg=~d. On the other hand, #,
coincides in order of magnitude with the time during which the heated layer of thick-
ness d doubles in width due to nonlocal thermal conductivity.* This means that the
self-similar regime at 7 2>ty matches the non-self-similar stage at ##;. Thus we have
the following physical picture. First the temperature T, which remains constant to
t=~tg, is established in the layer d during the time 7. During this time the heated
layer begins to expand, and the propagation is converted to a self-similar regime
which persists to 2 7., . At this time, the temperature spreads to a depth I, as it de-
creases to T . At this moment the frequency of phonons that transfer the energy is
equal to this temperature; because of this, the mechanism of nonlocal thermal con-
ductivity is no longer in effect. It can be shown that at #>>r., the anharmonic pro-
cesses are unessential and that the phonons of different frequencies diffuse indepen-
dently of each other, thereby breaking down the Planck distribution ; however, their
average frequency remains at the level w~T..
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