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A contour treatment® = of the non-Abelian gauge field theories involves, in par-
ticular, a reformulation of the classical and quantum equations of motion in terms
of the nonlocal value
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where Cyy is a curve with the origin at the point x and the end at the point y. In
this letter we shall derive a contour equation, which is analogous to the Makenko-
Migdal equation, for the supersymmetric gauge theory, i.e., for supersymmetric gen-
eralization of the value u(C). The supersymmetric generalization was examined in
Refs. 4 and 5, and in Ref. 5 it was used for a superfield derivation of the supercur-
rent anomaly in the supersymmetric QED. The supersymmetric contour equation,
which is different from ours, was proposed in Ref. 6 for another (Abelian) model—
the Ogievetskii-Sokachev model.”

Below we analyze the standard supersymmetric gauge theory (V=1) with a non-
Abelian gauge group.?

The contour in the superspace is the set z*(s) = x™(s),0 u(8),0,(s) , where
{xm (s)} is a contour in the ordinary space, and 0,1,‘0—',-, of each s are independent gen-
eratrices of the infinite-dimensional Grassman algebra with an involution (for which
0, e?,l)? The supersymmetry-supertranslation transformations of the contour have
the following form:

C~»Cp=1{x"+ifc™ —-iﬁom§,0+n. 6+71,
—> -> o >\ (2)
(6™gf = (L) 3(3™%R = (1,-75)%8

where o are the Pauli matrices, and 7 is a constant (s-independent) spinor.

The generalization of u(C) for the contours in the superspace is given by the
formula®

M
U(Czl"z) = Pexp (Cf ds EM'AM), TrU(C,,) = ¢(C), M d;s
z_z
12 (3)
Here 4, are the superpotentials,® which are transformed as a “convecter” in the
supertranslations (i.e., in a contravariant manner with respect to 2¥). The superpo-
tentials 4 4 , which are superfields (i.e., their argument is replaced as a result of super-
translations), are derived from A ,; after multiplication by a tetrad®

8 0 0 ' .
AA=e‘2A , eﬁ" - i(a’"@)a . ag 0 s &B =—cﬁa=¢E.
i(6o™geBE 0 5 101

4)
Operations on the contour functionals—the derivative with respect to the small
area §/80M™ and the covariant derivative 3 s —can be easily applied to the case of
contours in superspace if we use their definition? in terms of the variational deriva-
tives 8/85M(s). If Misa spinor index, then this must be a backward ferionic variation-
tional derivative.® The standard formulas apply in this case

5y(C) 5
— = TrFyyU(C..), F =(_ +AA)¢ Me N
oMl z) S W\ M NN e,
)
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Ok 5omw (e ) = Tr DeFynU(C,,), Dy =

+ 04y, ]

(6)
The derivatives with the indices 4, B. . . are obtained, as usual, by substituting
8162 for §/6zM in the definitions, The supersymmetric gauge theory with
N=1is formulaled8 by reducing the superpotentials 4 4 to the Hermitian matrix
superfield V(x00)

4
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= ' LR -V 4 i-. D.
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The differentiation operators on the right-hand side of Eq. (7) lead to the appearance
of the V4 operator on the right-hand side of the contour equation (9).

The action® gives rise to the equations of motion
D; (5°YPEg, = 0. ®)

By writing the equations of motion in the geometric form (8), we can represent them
as an equation for Y(C) with the help of Eq. (6); this gives rise to the operator on the
left-hand side of the contour equation (9).

Proceeding in a manner analogous to the original derivation of the MM equa-
tion,> we obtain a set of equations for the “Green’s contour functions”
(W(Cy). . . ¥(Cp). Because these equations are cumbersome, we shall omit them as
well as their derivation; however, we shall give their corollary—a closed equation for
w(C)={1/n Y(C)) in the limit of the infinite number of colors (n o)

Sw(C)

D. (52 yapg 22t/
soB%(z)

=X [ds:4 ,
[E21Vale €L )alC, s (s - 0,

€)
i s — = )
a5 - OB, (- arn, - o1y

A is the coupling constant.

Because of the equality . dsz™ 8/3z™ =0, the right-hand side of Eq. (9) is inde-
pendent of the arbitrary parameter «. This equation must be complemented by the
equations corresponding to Bianchi’s identities.® We shall write only one equation
which shows that the choice of the operator on the right-hand side of Eq. (9) is am-
biguous,

l_);;(;a)&ﬁ 5w(C) "a)ﬁasw((:)

8 oP¢ 5a2?

(10)

It is easy to verify that Eq. (9) is invariant in the supertranslations: if w(C) is a solu-
tion, then w(Cy) must also be a solution. This property generalizes the properties of
the MM equation (Ref. 3) in the standard translations.
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