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A two-component Bose condensate and collective excitations in a spin-polarized
Bose gas of an atomic hydrogen are analyzed. The ratios for critical gas density
are calculated. The spin excitations are threshold-free if this critical density is
exceeded.
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1. Atomic hydrogen in a magnetic field is a four-component Bose gas, whose in-
dividual components have different spin configurations. Since this system remains
a gas even at T=0, the condensate and the collective excitations in it can be ade-
quately analyzed by using the well-known Bogolyubov method.! The excitations, in
which the electron spin is reversed, are of particular interest, since the interaction of
such particles with the polarized-condensate atoms has a singlet component, which
reduces the excitation energy compared with the gap 2ugH. This imposes con-
straints on the gas density—theoretically, there is a critical density #,., at which the
energy gap, which impedes depolarization and hence recombination of atomic hy-
drogen, vanishes.

The excitations in such a gas were analyzed for the first time by Berlinsky” (see
also Ref. 3), who assumed that the condensate has one component. However, the re-
sults obtained by Berlinsky are incorrect because of the implicit assumption that the
pair correlation functions for the atoms with parallel electron spins are the same as
those for the atoms with antiparallel electron spins. In fact, there is a basic differ-
ence between these functions, and, as we shall see from the results below, the criteri-
on for critical density turns out to be entirely different. Allowance for the two-com-
ponent nature of Bose condensate changes the spin excitations.

2. The system of spin wave functions of an isolated hydrogen atom in a strong
magnetic field has the form
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where o(0") and B(a") are the spin wave functions of the electron and nucleus, re-
spectively, o' and ¢” are the projections of the electron and nuclear spins in the direc-
tion of the magnetic field, k =4/4ugH <1, and A is the hyperfine interaction con-
stant.

At T'=0 most of the particles in a polarized gas of limited density 7 (na,> <1,
where a; is the scattering length due to collision of atoms in the triplet state) are in
the Bose condensate that consists of a mixture of atoms in the ¢; and ¢, states. Al-
though the energy in the ¢, state is slightly lower than that in the ¢ state (atH
~10% Oe Ae~5X 1072 K), the transition time from the ¢; state to the ¢, state due
to dipole-dipole interaction in the collision turns out to be large compared with the
typical decay time of a polarized system (see Ref. 4 for a more detailed account).
We can assume, therefore, that both states can have a two-component Bose conden-
sate with a fixed number of particles V3 and V.

The subspace of the ¢, and ¢, states is separated from the Bose condensate by
an energy gap whose scale is 2ugH. When a particle (or a few particles) is produced
in the ¢; and ¢, states, the number of particles in the upper (¢, , ¢,) and lower
(3, ¢4 ) subspace is conserved in the exchange interaction with the condensate.

The Hamiltonian of the pair interaction of particles has the usual structure
A A A 1
Hipy = UR) + AR)(S,S,+ —) @)

where S; are the operators of the electron spins of particles.

We shall begin by analyzing the collision of a ¢; particle with the condensate
atoms, ignoring the small corrections of order k. As a result of collision of particles
with opposite electron spins, the wave function of the pair is a superposition of
singlet and triplet functions. If a ¢, particle is scattered by a ¢, particle, the scat-
tering can occur only in the triplet channel as T 0, since the nuclear spins are paral-
lel to each other (the scattering in the singlet channel occurs only for odd values of
the orbital quantum number j, and the corresponding amplitude vanishes when the
particle energy approaches zero). Thus the scattering is purely elastic, and the par-
ticles remain in the ¢, and ¢, states. The corresponding vertex for the particle-in-
teraction Hamiltonian in the second quantization is

2nR2
a, (3)
mV t
The interaction of ¢; and ¢5 particles can have two elastic-scattering channels.
This is attributable to the fact that the nuclear spins of particles in this case have op-

posite projections, which gives rise to the possibility of s scattering in the triplet and
singlet states. The corresponding vertex is
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where a; is the scattering length in the singlet state.

However, the amplitude of a different process, in which the ¢; condensate par-
ticle changes to the ¢, state and the ¢, particle changes to the ¢, state, turns out to
be nonvanishing after the collision of ¢; and ¢; particles. The vertex for this process
is determined by the expression

2q%2 (at - as)
mV 2 ’

We have a mirror picture when a ¢, particle interacts with a condensate—the scatter-
ing of ¢, and ¢ particles is purely elastic with the vertex (3), and the interaction of
¢, and ¢4 particles leads to elastic scattering with the vertex (4), as well as to the

transition of the particles to the ¢; and ¢; states, which is described by the vertex (5).

&)

We shall write the Hamiltonian in the second quantization for particles in the
¢, and ¢, states, which interact with the Bose-condensate background, and take ad-
vantage of the change to the ¢ numbers for the operators of the creation and annihili-
ation of particles in the condensate. Incorporating Egs. (3)-(5), we directly deter-
mine
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n; =N;/V, and ¢; is the energy of a hydrogen atom in the magnetic field, which cor-
responds to the ¢; state in (1).

The Hamiltonian (6) can be reduced to the diagonal form by canonically trans-
forming it to the new Bose operators

blk = UGy |~ V%9

b
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The Hamiltonian corresponding to the new, collective excitations has the form
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where

1 1 &2 9 (wl—a)2>2
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3. Let us examine the case n3 =n,. In this case §= 1€ -€; [y, ~14/2
- 2upH /712 (up >0 is the magnetic moment of a proton). If the particle density is
sufficiently high, so that §<€1, we can determine from Egs. (9) and (10),

f2L2 ’evl +?2 4 %2

€_(k) = o + 5 + ~ na, , (11)
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€ (k) = 5 + 5 + — (a, —a,).

The ensuing collective excitations are a superposition of the ¢; and ¢, states. It is
easy to see that this leads to the appearance in these excitations of a constant com-
ponent of the magnetic moment, which is perpendicular to the magnetic field and
which is

M, = i(pp + kpp).

(We note that it was pointed out in Ref. 5 that a transverse macroscopic moment
can occur in a thermodynamically unstable, two-component Bose condensate.)

The excitation energy corresponding to the transition of a particle from the
condensate to the 1(e, ) state, or to the 2(e, ) state is given by

m m
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It follows from expressions (13) that the inequality
27 k2

nfa, —ag) < 2ugH (13)

must be satisfied in the absence of nonthreshold spin excitations.

For finite densities when the inverse inequality > 1 is valid
h2k2 nh?
P +2pupH - — nfa, —ag). (14)

As a result, inequality (13) must hold for both types of excitation if the multiplier
2 on the left-hand side of this inequality is dropped.

€, (k) S e,(k) =
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If ny <n4, then the excitation energies remain the same as in (12), and
¢, (k) <r €5 (k) inversion occuss at ry > ni . Thus the criterion (13) remains valid.

The criteria determined by us, which turned out to be appreciably weaker in
comparison with those of Berlinsky,? lead to much higher values of critical density
(according to the calculations of Ref, 4,2, =0.72 A and ¢, =0.33 A). In a strong
magnetic field these criteria are realized with a large reserve for all conceivable den-
sities of the gas phase.
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