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It is shown that the Schrédinger equation for highly excited states of a hydrogen
atom in a magnetic field H allows a separation of variables (within an accuracy
of HY) in elliptical-cylindrical coordinates on a sphere in a four-dimensional
momentum space. A new classification and approximate selection rules are

proposed for these states.

PACS numbers: 32.60. + i, 31.15. + q, 03.65.Ge

A large number of papers have been devoted to the study of the hydrogen atom
in a magnetic field. An interest in this area has increased recently as a result of ob-
servation of an exponential decrease in the splitting of the energy levels at the quasi-
intersection point with an increase in the principal quantum number 7."* To ex-
plain this effect, it was argued in Refs. 1 and 2 that an approximate latent symmetry
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exists. In the present paper such a symmetry is found by means of a quasiclassical
perturbation theory of the magnetic field. The quasiclassical approximation in this
case is justified, since we are dealing with large values of n. The applicability of per-
turbation theory in the quasi-intersection region was discussed in Ref. 1.

In the unperturbed problem the electron motion occurs along the Keplerian el-
liptical trajectories. A nontrivial part of the perturbation is the diamagnetic interac-
tion ¥'=1/2 w?p? (the magnetic field H is directed along the z axis, p? =x* + 2,
w=2H[¢c, h=m=e¢=1, and c is the velocity of light). To calculate the change of the
Keplerian trajectory due to the action of a magnetic field, we have used the secular-
perturbation method,? in which the electron motion is divided into the motion along
an unperturbed elliptical trajectory and a slow variation of the ellipse parameters due
to perturbation V. We choose the angular momentum L= {rX p] and the Runge-
Lenz vector A= [p X L] -r/r as the parameters that specify the ellipse shape and
orientation. Differentiating L and A with respect to time, we obtain equations that
describe the variation of these quantities due to the action of the magnetic field

dL dA
—d—t_ =-0’ (e, ‘E=‘m2{[p[r3”+[3[1p]]}' 1

As w? =0, the variation of L and A during the rotation period of the electron along
the ellipse approaches zero; therefore, the right side of Eqs. (1) can be averaged over
the period, assuming that L and A are constants in first approximation. The exis-
tence of three independent motion integrals follows from the equations obtained
after the averaging,

L,y Q=L2/(1—4%), A =447 -542.

L is a known, exact motion integral for the hydrogen atom in a magnetic field, and
Q and A are approximate motion integrals, which are conserved within an accuracy
of H*. The quantity @ is equal to the major semiaxis of the ellipse* and its conserva-
tion reflects the fact that in first approximation the particles wander along the ellip-
tical trajectories that correspond to the unperturbed energy.

The existence of the motion integrals L., @, and A makes it possible to describe
analytically the caustic curves and to formulate the Bohr-Sommerfeld quantization
conditions. Of the three quantization conditions, two conditions give an obvious re-
sult : L, =m (m is the azimuthal quantum number) and the unperturbed energy £,
=1/(2Q)=1/(2n*). The third quantization condition, from which the motion inte-
gral A is determined, is nontrivial. For the formulation of this condition we choose
the angle 8 between the Runge-Lenz vector and the z axis as the generalized coordi-
nate. The generalized conjugate momentum of this coordinate is the L, component
of the angular momentum, which is perpendicular to the plane passing through the z
axis, and the Runge-Lenz vector. Using the condition (L« A)=0, we express L in
terms of the motion integrals and the angle 6

L P /2 1 A mz* (2)
1L (6) =V n " 1 -5=sin’ @ T sinf

As a result, the Bohr-Sommerfeld condition assumes the following form:
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where 8; and 0, are the roots of L, (8). An important fact here is the presence of a
pole inside the square root in Eq. (2) at the points 7 -0 and 8¢ (cot 84 =2). Be-
cause of this, all the trajectories are divided into two nonoverlapping classes: tra-
jectories with A <O (it follows from the definition of A that -1 <A <4), which li-
brate within the cone 0 <8 <8, (or 7-0, <8 <r) and trajectoried with A>0,
which librate outside this cone (8o <8 <mw-8y). The energy in first-order perturba-
tion theory, which is expressed in terms of the average value of p? in the period, is

1 w?in?
2.2 7 T3

The value of Ay is determined from the quantization condition (3).

E=E +/202p<-

The motion integral A is obtained in a quasiclassical approximation. We can also
show that the operator A=a4?-5 /'1\3 commutes with the total Hamiltonian of the
system in the n layer at large values of n. In Ref. 5, which was devoted to separating
the variables for the hydrogen atom, among the various options we have examined
one in which L, and A were chosen as independent motion integrals. Using the re-
sults of this paper, we can see that the Schridinger equation for highly excited states
of the hydrogen atom in a magnetic field allows an approximate separation of vari-
ables (within an accuracy of H*) into elliptical-cylindrical coordinates on a sphere in
a four-dimensional momentum space. As regards the level splitting at the quasi-inter-
section point, we should note that the exponential decrease of the splitting with an
increase of # is not directly attributable to the existence of an approximate sym-
metry. This decrease is caused by a separation, which is peculiar to this probiem, of
the states into two classes (Ax <0 and Ay >0), which are localized in two nonover-
lapping regions of configuration space in the quasiclassical approximation; therefore,
the splitting is determined by the product of the wave functions in the classically
forbidden region in which they are exponentially small. The level splitting A
=(y1|V1y,) can be estimated by incorporating the characteristic scale of the Ryd-
berg states in the following way: In the classically forbidden region y;~ e/ we ob-
tain A ~exp(-2n+m) by replacing  in the wave function by its average value in the
n layer for a constant m. This simple estimate is in good agreement with the results
of Refs. 1 and 2. The other matrix elements between the states of the different
classes presumably are also exponentially small. This pertains to the oscillator
strengths, for which additional approximate selection rules are in effect. If we ex-
amine the two states belonging to one class, then the splitting in this case must de-
crease as a power function with increasing n (presumably as n™>). The obtained re-
sults show that in addition to the known separation of states with respect to parity
at a constant m, there is an approximate separation associated with the sign of A.
Four classes of states can thus be identified: ¥z, Ying, Yrmu, and Y., [as usual,
the subscripts g and u determine the parity of states, while the superscripts (*) de-
note the sign of A]. If the superscripts of the two states are different, then the quasi-
intersection for these states becomes an exact intersection. For the states in which
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only the superscript is different, the splitting is exponentially small for the large
parameter n. Finally, if all three indices are identical, the splitting is a power func-
tion of a.
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