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A power law for the decrease of a large-angle scattering cross section, which is a
consequence of the analytic properties of the transferred-momentum amplitude,
has been obtained within the formation based on the solution of a simultaneous
equation for the amplitude in the quantum field theory.

PACS numbers: 11.10.Qr, 11.20.Dj, 11.80.Cr

Experimental studies of large-angle scattering have led to the discovery of a pow-
er law for the decrease of cross sections in this kinematic region. A detection of these
systematic features was very important in the understanding of the structure of had-
rons.! They showed that the effective inhomogeneity of close-range interaction or
the point components of hadrons are crucial in large-angle scattering.

It is known that a scattering in the region of small values of #/s can be described
in terms of dynamic ratios of the quantum field theory. In this letter we show that
the power law for the decrease of cross sections, which is a consequence of the anal-
ytic properties of the transferred-momentum amplitude, is valid for a scattering amp-
litude which satisfies a simultaneous dynamic equation (a relativistic generalization
of the main equation of the quantum theory of attenuation) in the region of fixed
angles (/s is fixed).

We shall carry out a comparison with the experimental data and discuss the role
of forward and backward interaction radii in the scattering at angles close to 0° and
180°.

The simultaneous equation for the scattering amplitude in the operator notations
has the form3

F=U + iUDF, (1)

We shall represent the kernel of the integral equation—the generalized reaction ma-
trix U(s, £)—in the form

Ufs, t) = Uys, 1) + Uy(s,u). 2)

Here the U, (s, t) function is determined by the dynamic properties of the direct pro-
cess, and U, (s, u) is determined by the properties of the exchange process. The scat-
tering amplitude can be written in the form

F(S,t)=F1(s’ t) +F2(S’u),

where the F; (s, ¢) and F, (s, u) functions are determined by the integral equations
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F,=U, + iUDF, +iU,DF,,

F,=U,+iUDF, +iU,DF,. 3)

The solution of Egs. (3) in the impact-parameter representation with allowance for
the relative suppression of the exchange process has the form

Fi(s,t) = z fd,sﬂlo(\/:ﬁ?),
272 o 1-iu (s, B).

4

Fy(s,u) = = [ dB “af* B)

I, (N-B%),
2n2%o [1- iul(s, B) ]

where §=b2.

The analytic properties of the Fy (5 [s, # ()] functions make it possible to write
the dispersion relations in ¢ and u variables, which, together with Egs. (3), give the
following representations for the uy (;)(s, 8) functions:

By (2) (% B) "#g Pr(zy(s» x)K , (VP dx. )

1(2)

It follows from this expression that the uy (2)(s, 8) functions have a singularity at the
point =0 (the cut Be[0, -==). This singularity gives rise to the power law for de-
crease of the cross section in the large-angle scattering.’

Let us examine the expression
u1(2)(8’ B) = ig1(2)(8)cxp(— #1(2)\/E [} (6)

which takes into account in a straightforward manner the analytic properties that
follow from the representation (5). An increase of the total interaction cross sections
requires that the g (s) function increase as s >o. Taking into account the polynomi-
al limitation of the U matrix, we set gl(z)(s)~s)‘ 1(2)/2, where A, <\;. The last
condition ensures a power-law decrease of the backward scattering cross section,
which was observed experimentally.

To calculate the integrals (4), we must switch from integration along the positive
semiaxis Be[0, =] to integration along the contour which includes this semiaxis and
which closes on the large circle in the complex f§ plane. In calculating the integrals of
the f; (2 (s, B) functions which have a singularity at §=0, it is convenient to switch
to the functions fi 2y (s, 8+ Bo), 8o >0, thereby shifting the origin of the cut to the
point §=-,, and then to switch to the limit 8,— 0 in the obtained expressions. The
contour in this case bypasses the cut Se|-fo, <], and the calculated values of the in-
tegrals converge uniformly on the expressions (4), which determine the amplitudes
OfFl(z) [S, t(u)] .

In the scatteringat angles close to 90°, the main contribution, as already men-
tioned, gives a singularity at the point $=0. Calculating the contributions to
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FIG. 1.

Fy (s, t) and F, (s, u) from the corresponding cuts, we obtain the following expres-
sion for the large-angle differential scattering cross section:

do 1 Ap+s [ —3/2 gy(s) 8 ,(s)
— z(——) (1~ cosB) + | —— (, —-2;11) + 0
dt s 1 ngl(s) gzl(s)
y 2
-3/2
x (1 + cos @) . (1)
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We can easily see that the obtained expression has the form do/dt ~ sV f(cos ), if
the s dependence for the g, (s) function is the same as that for the g, (s) function.
Figures 1 and 2 compare the angular dependence (7) with the data for 7*p scattering.
The general normalization and the coefficient in the square brackets were assumed
to be free parameters. The expression (7) was obtained for the case in which the U
matrix has the form (6).

A selection for the u, (3) (s, §) functions of other, more complex expressions
than (6), for example, u;(2)(s, B) =ig1(2)(s, B)ui(2)B) 1@ n*1C) (i 2y)
X exp(-Hi(2) v/B), does not change the main results, but leads to the appearance of
additional factors that contain Inltl.> The expression for the cross section has the
form

2 M*n
d 1 # '
LIgna ( L) et )
ar g2 s | (1A L] Y1) /e,
2 2y, + 1 1 2 1T Y
+ (=1)%17%2 gz’(S)(_#_l) 1 (#2
g1(s )" 2 (14 2y =y 1]
1 2
% ;bz(ln"l}u[ /#22)} ’ 8
10291702 [y | /2
¢i(0)*1-

The expression (8), which was obtained by us from the analytic properties of the
amplitude and from general considerations of the U matrix, coincides with that ob-
tained within the context of the perturbation theory in QCD.*

The behavior of the cross sections in the region of small values of ¢ and u is con-
trolled by the effective forward and backward interaction radii®* R 12)(®)

=1 (2) Ingi2)(s). In fact,
do

do
- l ~ R:(S), —d— Ngg(s)g-l4(s)R‘2(S),
t t=o U "u=o

and the scattering amplitude for the angles close to 180° contains an additional fac-
tor exp{-u, [R,(s)-R2(s5)]} , which has an obvious geometric meaning.

Conversely, the relative contribution of the direct and exchange interactions in
the region of fixed scattering angles, in which the impact parameters 5~ 0 play a
part, is determined by the ratio of the corresponding intensities: g,(s)/g; (s).
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