‘Stimulated scattering following excitation by radiation

having a broad angular spectrum
A. F. Korolev and V. |. Odintsov

Moscow State University
(Submitted May 21, 1975)
Pis'ma Zh. Eksp. Teor. Fiz. 22, No. 2, 68-72 (July 20, 1975)

It is shown theoretically that in the case of stimulated scattering in a pump field having a broad angular
spectrum an appreciable parametric contribution is made to the enhancement of the Stokes radiation, and

this contribution influences its angular distribution.

PACS numbers: 42.65.D

In the theoretical analysis of stimulated scattering
the pump radiation is usually represented in the form of
a homogeneous plane wave. We indicate in the present
communication interesting features of stimulated scat-
tering that are produced in a pump field that is “non-
monochromatic” in angle. The employed calculation
method is effective in the approximation of a constant
pump field also under the condition that its angular
spectrum is broad enough. For the sake of argument we
shall deal here with the case of stimulated Raman scat-
tering (SRS) by fully-symmetrical molecular vibrations,
although the main conclusions apply equally well to
stimulated Mandel’shtam-Brillouin scattering (SMBS).

We consider the simplest case when a monochromatic
pumping radiation E, (r,#) = E, (r) exp(iw, t) is incident
on a layer of Raman-active medium located between the
unbounded planes 2 =0 and 2 =1[; The pumping radiation
consists of two plane waves polarized along the y axis
(Fig. 1):
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‘where k;, ,| =%, = uw,/c (i is the linear refractive
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index, assumed to be the same inside and outside the
layer); kpy, == Rpaes kpiy=kpa, =0, kpy, =k,

Neglecting the radiation of the anti-Stokes and of the
higher Stokes components, we write down the equation
for the Fourier amplitudes of the field of the first
Stokes component

. 2
[’:E(ms, r) -—41&:55? k4 (wgs T} (2)
c

where L is a linear differential operator that includes

FIG. 1, Diagram of wave vectors.
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FIG. 2. Illustrating the determination of the mismatch of the
phonon-wave wave vectors.

the nonlinear-polarization term responsible for the SRS,
and P*(w,,r) is the amplitude of the Fourier polariza-
tion produced by the spontaneous transitions.

The solution of the homogeneous equation LE=0 de-
pends linearly on the boundary conditions, and therefore
it suffices to consider the case when one plane wave
Elwg,r)= 5° exp(—ikg, - 1) is incident on the medium
(Ikg,| =kg=pwg/c and 2<0).

We assume that the angle o is large enough
1 77
a>> — A/kL ’ (3)
2

where A is defined below (see (6)), and the angle be-
tween K, and Kk, , is smaller than the angle between kg,
and k;,. The solution of the homogeneous equation can
then be sought in the form

* 3-;( wg, 2)e” 152", @

E(wg ., 1) = gl(“’x- z)e-zknr
where | kg ,| = kg and the wave-vector components per-
pendicular to the z axis are connected by the__relatiqp
q, =4d,,, where q,=k; ,-k;,. We obtain for ¢, and ¢,

a system of two differential equations, the solution of
which depends significantly on the quantity A, =gq,,
=Gy,

We take the case ks,,.—O 6,
.along the y axis); then &, =¢&,¥, and 2’
<« 11/21 we can obtain

(y, is a unit vector
62y1 At AZI
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where n=m/(1 +m?), m=18&,,1/1E,), §=E,./Em,
=(1/2)b(p)(1 +ip)I,/cosp is the propagation constant
of the Stokes wave without allowance for the parametric
" interaction, and determines the “incoherent part” of the
gain, I, is the summary intensity of both pump compo-
nents, b{p)=5/(1 +p*), b=>(0) is the gain at the central
frequency % of the Stokes line following excitation by
one plane monochromatic pump wave, per unit intensity
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of the pump wave, p=2(ws — wl)/AQ, and AQ is the
spontaneous scattering linewidth. We have assumed
cosp=cosp,= cosf.

It can be shown in the general case that if

A < S' ~max. _.._ 4
21 21 ‘{ 2’ £ I ’ (6)

where g=ng, g=2Rek, then the contribution of the
parametric interaction to the total gain is comparable
with its maximum value &, which is reached at A,,
< m/2l. At Ay, >A, , the parametric contribution de-
creases rapidly with increasing 4,,. At 4,, » 4,,, &,
=¢&%exp(kz), and &, =

We turn to the inhomogeneous equation (3). The
macroscopic polarization Ps?(r,t) can be expressed in
the form P=*(r, ) =a(r,f)E, (r) exp(iw,t), where P* and
a are determined for a fixed averaging volume whose
dimensions are small in comparison with ». Using the
expansion a(r,t)=//"_a(Q,q)exp[- i{Q% - ¢ « r)]dQ do
and representing the Stokes field in the form E(ouS ,T)
=/ E,.(wg,r)dq’, we can easily obtain an equation for
the fxeld E, produced on a definite initial phonon wave,
When Eq. (3) is satisfied, the solution takes the form
(4) at q,, =q,,=q’,. Expressing the power spectrum of
the random function a(r,t) in terms of the spontaneous
Raman scattering cross section, we find that for the
parametrically-active directions (see (6)) in the xoz
plane, at m =1, the spectral density of the intensity of
the radiation propagating in the solid angle d¢ is equal

to
£ igl 1
N, Tag 1<ez _1)+_(e8’-1>!d0. (7
N, =N, 2m2|3 2 J

where N, and N, are the concentrations of the molecules
on the lower and upper vibrational levels.

d!fws, l) =

A similar analysis can be carried out in the case when
the pump has a “noise” angle spectrum. We assume the
pump radiation to be concentrated in a solid angle 6,
with aperture 2¢ and to have a uniform brightness B=1/
6,. The data that follow pertain to “forward” scattering.
The angular pump spectrum can be regarded as broad
if 20> VX, /2]. The parametrically active directions
are those lying within 6,. If B<B_ =gq,/27b(p), where
go=Fk; — kg, then the parametric contribution to the gain
G(z)=[;7(z')dz’ at z>u/q,0? approaches asymptotically
the maximum value G, ~72Bb(p)/q, (7*b(p)B/q,— 1/2 as
B-—B,). If z<u/q,0% or B> B__, then the parametric
and “incoherent” parts of the gain are equal, g=g. At
b=3x10" cm/MW and (w, ~ wg)/27c=992 em™ (C.H,)
we have B, =4.8x10° MW/cm®sr. The critical bright-
ness B, is the analog of the critical spectral pump
density . 1!

For backscattering we get B, ~ (ZkL/qo)B and G,
~(qy/2k,)C., (here and in Fig. 2 the minus sign denotes
backseattermg) The decrease in the effectiveness of
the parametric interaction in backscattering is due to
the increase of the mismatch of the vectors of the pho-
non waves, as illustrated in Fig. 2.

The obtained regularities explain the “repetition”
effect investigated in‘?!,Y They determine also the
presence of an appreciable “front-back” scattering
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asymmetry and indicate that the latter should increase
sharply when the critical brightness is exceeded.
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