Hydrodynamic limit for volume oscillations of the nucleus
in the theory of finite Fermi systems
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A hydrodynamic limit corresponding to volume oscillations of the nucleus is obtained in the theory of
finite Fermi systems. A nuclear analog of the Cerenkov, namely generation of a density shock wave in
nuclear reactions, is discussed.

PACS numbers: 21.60.

In this article we wish to call attention to a possible 2
(A + "'_2)V(x) -0 (inside the nucleus)
[

oscillations of a nucleus. The main physical result of

the paper is the following: collective oscillations of the with a boundary condition on the surface &
nucleus, with high frequencies w, constitute volume av.
waves and are described by an equation of the hydro- — s =0.

ax

dynamic type for an effective field V(x)!*!
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To demonstrate this, we write down an equation for
the matrix elements V,,, over the one-particle states'!!

nz-n ,

2
Vyelo) =¥ (@) +3 <1276 21"> ————¥,.,(a).
22° € et
(3)

Here {12"1512’), n,, and ¢, are the interaction, the
occupation numbers, and the energy of the quasiparti-
cles, respectively, while V3, (w) is the unrenormalized
field. We consider the natural solutions (V°=0) of (3)
with frequencies in the interval (e, =p2/2 is the Fermi
energy and p, is the Fermi momentum)

> 05> Lo med. (4)

Integrating (3) with respect to 1/w, we obtain
1

V(1) == =, Tr2<G”[p(2); (S(2); V(Z)J]) +1 Try(G,le,; Vo))
W w

where p is the one-particle density matrix and S is the
self-consistent Hamiltonian., Assuming for simplicity
the interaction G to be a function of the spatial coordi-
nates only, we have (i=m =1, p(X)=p(x| X') is the den-
sity in the nucleus)

-w?V(x) = [dx"G(x| x}div{p(x") VF(x7)). ()

Bearing in mind the fact that undamped volume waves
exist only in the case of repulsion, we use the simplest
approximation of the interaction in the theory of Finite
Fermi systems (n=p3/37%, fis the coupling constant)

. d" rd
G(x| X7y = [} =8 (x=x7). (6)
‘F

Substituting (6) in (5) and integrating the obtained equa-
tion over a layer of thickness L(R,> L> a, R, is
the radius of the nucleus, and a is the diffuseness
parameter) near the edge of the nucleus, we obtain
directly (1) and (2). For the speed of sound ¢ we have

¢ =ppVf/3.

The result has a lucid physical meaning. The inequal-
ities (4) mean that the correlation length p,/w should be
in the interval (r, is the distance between particles)

R, >> pp/w>> r.~ Vp, , (7)

which in essence is equivalent to the requirement that
the collective motion be local. We note that the condition
(7), physically speaking, is analogous to the criterion
for the transition, in hydrodynamics, to a finite Fermi
system with pairing, 2!

The equations derived in the paper are, in our opin-
ion, of more than just methodological interest. Let us
consider the problem posed in!®', that of the excitation
of volume oscillations in scattering of high-energy
nucleons, The unrenormalized field W is in this case of
the form

Ve(ly = Try(G,,80(2)),
where 6p(2) is the distortion of the density matrix in-
side the nucleus and is due to the incident particle.
Neglecting the bending of its trajectory and changing
over to the time-dependent description, we obtain

p(x)
c?p(0) (8)

dn 9%
< -_l-iz)l/(x;z):-[ _.".__a(x-b-w)

2
c? g¢2 ch at
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where b is the impact parameter, v is the velocity of
the outer nucleon, and the last factor in the right-hand
side of (8) reflects the fact that the perturbation is
different from zero inside the nucleus. Equation (8)
coincides with the wave equation for the potentials in
classical hydrodynamics, with a source

2 g
N TN}
‘F < ?p{0)

This analogy allows us to draw a number of physical
conclusions without solving the equation. In particular,
if the velocity of the outer particle is v > ¢, then we get
the analog of the Cerenkov wave, i.e., a density “shock
wave” of sorts. We note that the “transition radiation”
due to capture of an external nucleon was considered
in[4] N

A FEW REMARKS AND CONCLUSION

For the assumptions (4) to be compatible with the
values of w determined from (1) and (2) it is necessary
to satisfy the inequality A'/3> ¢/p.>1 (4 is the atomic
number). This signifies a rather narrow region of ap-
plicability of the hydrodynamic description of the
volume oscillations.

A direct analogy with the Cerenkov effect is meaning-
ful only in the case when the dimensions c¢7 of the radia-
tion cone (7 is the time of flight of the external particle
through the nucleus) lies in the interval R, > c7>> 7,.

The interaction G near the edge of the nucleus re-
verses sign,'! as a result of which the volume mode
attenuates on the surface and should match there the
surface oscillations, '8!

The volume oscillations were calculated in a number
of papers (see, e.g.,'®!) with the aid of the equations of
the homogeneous Fermi liquid with the boundary
condition

av
s + const I lz- 0,
i.e., with introduction of a free parameter. We empha-
size that the microscopic theory provides a unique con-
dition on the surface (2), and in the region where hydro-
dynamics is valid it leads to much simpler equations
than in'®!,

The author is indebted to S.T. Belyaev and V.G.
Zelevinskil for valuable critical remarks, and also to
Ya.S. Derbenev and V.B. Telitsyn for useful
discussions.
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