Topologically nontrivial particles in quantum field theory

Yu. S. Tyupkin, V. A. Fateev, and A. S. Shvarts

Moscow Engineering-Physics Institute
(Submitted June 30, 1975)

Pis’'ma Zh. Eksp. Teor. Fiz. 22, No. 3, 192-194 (August 5, 1975)

We establish the existence of unusual (“topologically nontrivial) particles in two-dimensional models in a
situation wherein there are no solitons in the corresponding classical problem (in particular, for the Ad* and

g interactions at large A and small g).

It has been recently ascertained that the particle-like
solutions of the classical equations can be correlated

with particles of the corresponding quantum problem, t1-3!

In some cases, topological considerations make it
possible to establish that the phase space of the clas-
sical problem is not connective; this fact is used to
prove the existence of particle-like solutions and the

quantum particles corresponding to them (see, e, g., ™).

If a particle-like solution belongs not to that phase-
space component in which the classical vacuum lies
(the state with lowest energy), then this solution can
be naturally called topologically nontrivial, We shall
also call the corresponding quantum particle topologi-
cally nontrivial; simple considerations show that topo-
logically nontrivial particles are stable, We show in
this article that topological considerations can be used
to prove the existence of unusual (“topologically non-
trivial”) particles also in the case when there exist

no particle-like solutions,

Let us consider first a two-dimensional model de-
scribed by the Hamiltonian H=Hy+: x [ P(¢(x))dx:,
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where H, is the Hamiltonian of the free scalar field
with mass m, and P(¢) is an even polynomial, K the
minimum of the polynomial Q(¢) = (m?¢3/2) + X\ P(p) is
reached not at the zero point, then we encounter, even
in the classical theory, violation of the symmetry
¢ = — ¢; this situation obtains also in the quantum
problem. The classical equations of motion have in
this case soliton with finite energy; as x—~= and x -~
these solutions go over into the classical vacua ¢, and
¢. (by classical vacuum we mean the number ¢ at which
the minimum of the polynomial @(¢) is reached). Con-
sider the quantum particle corresponding to the soliton
(extremon, in the terminology of '3%), Let ¢ =4(f) be
the state vector of this particle with wave function f,
It is easily seen that for any local (or quasilocal) op-
erator we have

m < Aaei ey, oiPrgs mca,, 0>, (D
where ® + ($.) are the ground states of the quantum prob-
lem (physical vacua) corresponding to the classical
vacua ¢, (¢.). (If there are more than two classical
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vacua in the theory, then the quantum corrections to the
energy of the vacua not connected with eachother by the
symmetry transformation ¢ = — ¢ are generally speak-
ing different, This means that not every classical
vacuum corresponds to a physical vacuum; it follows
therefore from (1), in particular, that not every soliton
has a corresponding quantum particle).

We turn now to the situation where the symmetry
¢ - — ¢ is broken in the theory described by the Hamil-
tonian H considered above, but this breaking is not
necessarily connected with violation of symmetry in the
corresponding classical theory. (It is known, for ex-
ample, the breaking of this symmetry takes place in
the case of strong coupling, i.e., when a is large
enough. ©®Y) This means that there are in the theory
two physical vacua, &, and $_, which go over into each
other under the symmetry ¢~ - ¢ (we assume for the
sake of argument that there are no other physical vacua).
We shall show that in the case considered by us there
exist states having finite energy and satisfying the con-
dition (1) (the energy is reckoned., as always, from
the ground state). It is natural to call these states
topologically nontrivial, (A state should be taken here,
strictly: speaking, to mean a positive functional on the
algebra of the observables, We can use, for example,
the L-functional formalism proposed in '®; then the
state described by the L functional, L(a*, @) should be
called topologically nontrivial if

}i:nhl‘.(a: sa) =L, {a*, a),
where «, is the function obtained from the function «
by a shift through x, while L, and L_ are functionals
constructed on different ground states.) The statement
that topologically nontrivial states exist leads to the
statement that there exist topologically nontrivial par-
ticles (at any rate if, as customariy assumed, the
in-states form a complete system, then there exist to-
pologically nontrivial particles, inasmuch as a topo-
logically nontrivial state cannot be constructed from
topologically trivial particles).

To prove the existence of a topologically nontrivial
state let us consider the canonical transformation o
defined by @(x) =¥ *a(x) and §*(x) =e***’a* (x), where
B(x) is a real infinitely differentiable function equal to

zero at sufficiently large positive x and equal to 7 at
negative x having a sufficiently large modulus (here
a(x) =1/N2x [e**qa(k)dk, where a’(k), and a(k) are the
operators for the creation and annihilation of bare par-
ticles). The state ¥ obtained from the physical vacuum
&, with the aid of the canonical transformation o is
topologically nontrivial, In fact, the condition (1) can
be easily verifed; it is necessary to show only that the
energy §(¥) of the state ¥ is finite, It is easily seen
that 8(¥) =(¥, | H -~ H1)®,, where H is the Hamiltonian
obtained from H with the aid of the canonical transfor-
mation o, Using this, we can express §(¥) in terms
of the function 1, , obtained from the truncated vacuum
mean values {¥, [a' (). ., a*(B,)a(p,)- - -a(p,) | 8,)T by
separating the 5 functions 6(ky+---+E, =Py —ccc = p,).
The functions v,,,, are smooth functions of the momenta;
the ultraviolet asymptotic form of these functions can
be investigated by perturbation theory, recognizing
that in the models under consideration, at large values
of the momenta, the effective coupling constant is
small, These considerations enable us to confirm,

by straightforward but cumbersome calculation, that
8(¥) <o,

In conclusion, let us discuss a model describing
massless fermions and massive bosons with an inter-
action Hamiltonian g [ ¥¥¢ dx. Iv. Tyutin and E, S,
Fradkin have shown that in spontaneous breaking of the
symmetry ¢ ~- ¢, P —=vys) takes place in this model
at sufficiently small g, and the fermions acquire a mass
as a result. Within the framework of theapproximation
used by them, it can be shown that topologically non-
trivial particles exist in this model, too.
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