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The phase transition in a three-dimensional model with dipole-dipole interactions is considered in the
quadratic approximation for the Gell-Mann-Low functions. It is shown that the phase transition is of first

order in the presence of an arbitrarily weak cubic anisotropy.

PACS numbers: 77.80.B

It was noted long ago that phase transitions in ferro-
electric crystals are usually of first order and are close
to second order., The best known example of this type
is the phase transition from the cubic phase into the
tetragonal phase in barium titanate. It is customarily
assumed that this phenomenon is due to the influence of
electrostriction on the critical thermodynamics of the
crystal. ™21 The electrostriction mechanism of the
transformation of the continuous phase transition into a
first-order transition is, however, not the only one,

As will be shown below, in the presence of dipole-dipole
interaction (which always exists in ferroelectrics), the
cause of the change in the order of the transition may
be the cubic anisotropy of the crystal, which can fur-
thermore be arbitrarily weak.

The Hamiltonian of a cubic ferroelectric in the criti-
cal region is taken in the form

1

Heoo pq L0 10 B0 v 8inanpl e, (@950
1 ; q ’ ‘a’
+ _4_!. u{% [2y, + (v = 2%) 5(!/3] &g { q) b, q9 t,éB\q b

q‘i‘q'*q“‘ qau -0 .
*dgla™), LI PR )

The vector field ¢, corresponds to the critical branches
of the spectrum of the system, while the bare “mass”

7, depends linearly on the temperature. The energy of
the dipole-dipole interaction®?®! is determined by the
parameter A, which is of the order of the cutoff momen-
tum qp in ferroelectrics, where this interaction is
strong,

The question of the order of the phase transition can
be resolved by determining the character of the evolu-
tion of the renormalized coupling constants I'; and T,
as functions of the temperature as T - T,."“=%! This
evolution is described by the equations of the renormal-
ization group. It is known, however, that the Gell-
Mann-Low functions which enter in these equations can-
not be calculated exactly, and can be approximated in
the region of interest to us by segments of power-law
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series only for (4~¢)-dimensional models, where ¢
«1. At the same time, if dipole-dipole interaction
is present in the system, the dimensionality of the field
¢, must be assumed to be equal to the dimensionality
of g-space. ®! Consequently, working within the frame-
work of the € expansion, we are forced to consider only
a “partially anisotropic” erystal, in which only three
components of the field ¢, are “enclosed by anisotropy”
in the Hamiltonian (1), and the remaining (1-€) compo-
nents remain “isotropic” (see, e.g.,'®). The relia-
bility of the results obtained by analytic continuation in
€ then turns out to be quite doubtful, inasmuch as the
symmetry of the Hamiltonian changes at the point €=1,
where the anisotropy becomes “complete.” On the
other hand, it was recently observed™’ that even a
quadratic-in-I" approximation of the Gell-Mann-Low
function yields directly, in spite of the lack of general-
theoretical premises, perfectly satisfactory results for
the Heisenberg three-dimensional model. Therefore,
bearing in mind the shortcomings of the ¢ expansion,
we shall consider directly the three-dimensional case,
hoping to obtain at least a qualitatively correct picture.

In our case, the correlation function G,,(q) and the
mass operator Z,4(q) are obviously not diagonal. Re-
calling, however, that G,z(q) coincides with the suscep-
tibility, we can easily obtain for it, as small values of
¢, the representation
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Since A~gq,, the longitudinal component of G,4(q) can
be neglected. Further operations on the derivation of
the equations of the renormalization group are quite
standard. ™% Making two subtractions and confining

_ourselves in (2) to the pole term, we obtain, neglect-
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Phase trajectories of the system (4). The region of instability
of the Hamiltonian (1) is shown shaded.

Expanding further the derivatives dT',/dr and dT,/dr in
a renormalized diagram series with propagators (3) and
separating the scaling asymptotic forms I'; =1207 V7g,
and T, =1207V7rg,, we arrive at the Gell-Mann—Low
equations for g(r) and g,(»). Accurate to second order,
these equations take the form
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The investigation of the system (4) is elementary, It
has two singular points: g,=g,=4& and g, =g,=0. The
first of them is a saddle point and the second is an un-
stable node. The phase trajectories of the system are
shown in the figure. It is clearly seen that all the tra-
jectories with the exception of the “Heisenberg” trajec-
tory (g, =g, go off beyond one of the boundaries of the
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stability region given by the equation gy =0 and g, =- 2g,.
Thus, in the presence of even very weak anisotropy, the
phase transition is of first order. The latter is typical
precisely of systems with dipole-dipole interaction. In-
deed, it can be shown that a cubic crystal with a short-
range potential and three-dimensional order parameter
experiences a first-order phase transition only at suf-
ficiently strong bare anisotropy, namely, when y,<0 or
Y2 > 37’1/2

We note in conclusion several smgularltles of the
phase transition in the model (1), which are typical also
of the transition in barium titanate. First, in our case
the character of the phase transition is determined by
the interaction of the critical fluctuations, i.e., the
transition takes place, just as in BaTiO,, ! in the re-
gion of strong correlation effects. Second, as seen
from the figure, the effective anisotropy of the model
increases as T, is approached. The growth of the an-
isotropy of the critical fluctuations in the region of the
phase transition in barium titanate was also noted many
times by experimentors. ! It is not excluded there-
fore that the fact that the phase transitions in BaTiO,
and in other perovskites are of first order is due, at
least in part, to the effect of the mechanism considered
above.

I am grateful to S. L. Ginzburg and S. V. Maleev for
a discussion of the results of the work.
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