Instability and nonlinear oscillations of solitons
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The method of the inverse scattering problem is used to solve exactly the problem of soliton stability in
media with dispersion relative to transverse perturbations. Solutions are obtained, which describe the
nonlinear stage of the instability and (in the stable case) the nonlinear oscillations of the soliton.
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1. The question of soliton stability in media with
weak dispersion relative to buildup of transverse
oscillations is conveniently solved within the frame-
work of the equation
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which was derived by Kadomtsev and Petviashvili, '
who have shown that the soliton

2

) (2)

u (x) =
ch?yx

is a stationary solution of (1) and is stable against
transverse oscillations if g®> 0, and unstable if g<0.
If u=uy+ 61 and 6u ~exp[iQU +ipy], then

Ql=8%pl+ ... . (3

in a medium with dispersion length A, the cases F£#20
are realized if the dispersion law is of the form

a)kz =2kl A% + .. ).

It was noted in‘?? that the method of the inverse
scattering problem is applicable to Eq. (1) (see also™?).
If we take a function F{x,z, y, t) satisfying the two
equations
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and solve for all values of x, y, and ! the integral
equation

o

Frx, z,y, t) +K(x,z,y,t) ~ [ Kix, s, v, t)F(s, z, ¥ t)ds =0,
(6)
then the quantity

d
u(x, y, t) =2— K(x, x, y,t)
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satisfies Eq. (1) even if « belongs to any matrix alge-
bra. In particular, for the soliton (2) we have
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The purpose of the present note is to obtain, by the
inverse-problem method, an exact expression for
©2(p), and also to investigate the nonlinear soliton
oscillations (at g%>0) and the nonlinear stage of its
instability (at g%<0).

2. Let u, F, and K be matrices in the form
@ a4y
0 a

Then u, satisfies the linearized equation
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Putting F =y, t) exp[-nx — k2], we obtain from®
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From the condition that u,(x,,?) decrease as x~ <,
we obtain k=v and Re(v —7) >0. From the conditions
for the compatibility of Eqs. (4) and (5) for F, we get
Sl ) ugj)’“iﬂt Fipy Ql=ﬁ2p3(vz-iﬁp). (7)
The sign of g must be chosen from the condition Im §2
z0as |pl -~=. At >0 formula (11) describes the
spectrum of damped oscillations, and at g2<0 it
describes the soliton instability growth rate. As !p]
-~ 0 Eq. (7) leads to the result of Kadomtsev and
Petviashvili [Eq. (3)]. Interms of physical variables,
the soliton amplitude is described by the deviation
8¢/c of its velocity from that of sound, and Eq. (1) is
applicable if the soliton thickness is Ix ~x(c/6c)t/?
«ly. Interms of these variables, the minimal trans-
verse instability scale is Iy ~8/v®~x¢/6c > Ix, which
justifies the applicability of formula (7) at &¢/c < 1.

3. Let us consider a broader class of exact solutions
of (1). Let u be a scalar and let g2<0. We choose the
function F in the form

FaWix, vy, t)¥*(z,y, t).

From the conditions for the compatibility of (4) and (5)
we have

22, D22
W(x, v, 1) = fa(qel™ ~M M=V =X dy (8)

Solving Eq. (8), we obtain the exact solution of (1) in
the form
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In particular, if
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we obtain a solution that tends to the soliton (2) as

t— and describes the soliton instability. By investi-
gating the case a(n)=ad(n - ny) with n,< v we verify that
as f- +% the solution (9) goes over into a soliton of
smaller amplitude 2n2 and a vibrational “background”
that decreases uniformly with x. Letting n,~ 0 we can
cause the initial soliton to vanish completely.

The possibility of complete vanishing of the soliton
as a result of instability development is due to the fact
that at g%<0 the soliton moves with subsonic velocity
6c < 0 and can give up energy to the small material
oscillations that overtake it. The intermediate picture
of instability development depends on the concrete
form of the function a(n).

4. In the stable case g2> 0 it is also possible to con-
struct for Eq. (1) an exact solution that depends on an
arbitrary function. We put

-z

F= X(x,9, t)e
Then

d . -vx
Wz gy b)) =2 o XM e , (11)
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where we get from the condition of the compatibility of
(4) and (5)

oe

X(x, y,¢) = [ crhjexpliky —qx+n(n? =v?) tldk; 7% =2 - ik,

If c(k) =2v8(k) + c(k), then the solution (11) describes
damped nonlinear oscillations of the soliton. In the
stable case p%> 0 the soliton is supersonic, and its
oscillations are damped by the radiation of the sound
that lags it.

The possibility of soliton vanishing through instability
at g%<0 causes the shock waves in media with positive
dispersion wj’ > 0 to have an essentially turbulent
structure.
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