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The exact wave functions of solitons and the corresponding eigenvalues of the Hamiltonian are obtained.

PACS numbers: 03.65.Ge

In this paper we construct the exact wave functions
and obtain the eigenvalues of the Hamiltonian

H=Tx?:a ]a55'§‘+asf , (1)

where J; is 2 symmetric and positive-definite matrix,
sy is the spin matrix, x numbers the lattice points,

and the sum over a denotes summation over the nearest
neighbors. The spin operators obey the usual com-
mutation relations. We introduce a local rotation
operator R(x) acting on the spin matrices in accordance
with the rule

R‘saRzR“BsB, (2)

where R*® is an orthogonal matrix. Informula we have
left out, for brevity, the index x. The stationary state
is sought in the form

l¥> -0 Rx) | 0>, (3)

where |0) denotes the ground state in the Heisenberg
model. We shall assume that in this state all the spins
have a maximum possible projection on the “3” axis.

In order for the state (3) to be stationary it suffices for
the local rotation matrix to satisfy the system of dif-
ference equations '

2, nxva)ef -0, 4)

Taped(x+a) eB (x) -0, (5)

The notation in (4) and (5) is the following:

na(X)=RaB(X)e§ (6)
eZ(x) = RWB(x)(eB+ i eh), (1)

where e; is a system of unit vectors directed along the
principal axes of the tensor J,; (we recall that e; coin-
cides with the spin direction in the ground state). The
left-hand sides of (4) and (5) are the coefficients of
s.(x) and s_(x+a) s_{x) in the Schr8dinger equation,
respectively. We note that n%(x)=1 and e%(x)=0.

The energy of the constructed state is

Ew —xza jaBn“(xTa)nB(x). (8)

Equation (4) is the condition for the extremum of the
energy (8). It is easy to verify that in the case of a
one-dimensional chain Eq. (4) is the consequence of
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(5). For the sake of simplicity, we consider the case
when two eigenvalues of J,, coincide, Jy=J,=J<Jy
(uniaxial anisotropy). In this case all the vectors n(x)
that satisfy Eq. (4) lie in one plane and are determined
by a single angle 8, between the “3” axis and the vector
n(x). Equations (5) reduce to a single difference equa-
tion

€os (0, 4 4 = 6y) +ysin 6,  ,sing =1, (9)

where y = (J; -J)/J. An investigation of Eq. (9) shows
that in addition to the trivial solution 6,=0 or = there
exists a solution of the domain-type wall in which 6,
varies monotonically from 0 to #, when x runs through
the values from — to +%. The solutions of (9) are
labeled by two indices: discrete, x,, which indicates
the number of the site at which |4, ~ 7/2] is minimal,
and 6, is continuous. The energy is independent of
these parameters.

In the case of a space with a large number of dimen-
sions, Egs. (4) and (5) are incompatible. However, in
the limiting case of a continuous isotropic medium,
when the variation of #n(x) is over scales L larger
than the lattice constant a, and J,z=J6,, the Egs. (5)
are statisfied automatically, accurate to within a small
quantity ~ (@/L)%. With accuracy ~a/L, the states con-
structed by us are stationary states of the Heisenberg
Hamiltonian. Equation (4) reduces in this case to a
differential equation. It can be obtained as the Euler-
Lagrange equation for the energy functional

2
I . (an“ .
E= T fd xax ),

"

n(x)=1, (10)

The problem reduces to finding nontrivial extrema of
the functional (9) of the classical field of directions
n(x). Exact solutions of this problem were obtained in
the two-dimensional case by Skyrme, 't

We have thus constructed inhomogeneous quantum
states of a Heisenberg Hamiltonian (solitons). The
coordinate x, characterizing these states commutes
with the Hamiltonian. It follows therefore that H does
not depend on the momentum p conjugate to the co-
ordinate x,. The energy of a state with a definite
momentum is likewise independent of the momentum.
The soliton velocity is therefore equal to zero. The
immobility of the soliton is caused by the conservation
of two important characteristics of the system, namely
the projection of the total spin and the topological
characteristic of the lattice, the degree of mapping.'®
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In the two- and three-dimensional cases the degree of
mapping has meaning only in the continuous limit. For
a lattice system, such a quantity can be conserved only
approximately. Therefore solitons of large dimensions
will be long-lived on the lattice.

Although the solitons are separated by an energy gap
from the ground state, they can play an essential role

in thermodynamics and kinetics at low temperatures,
owing to the large statistical weight.
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