Dispersion of orbital waves in the A phase of superfluid He?
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A linear dispersion law is derived for orbital waves in the 4 phase of He’.

PACS numbers: 67.50.Fi, 67.20.Cp

Orbital waves are collective excitations connected
with violation of invariance to rotations in the A phase
of He®. The dispersion of orbital waves, which was
calculated™? near T, without allowance for dissipative
processes, is of the form w ~psqz/mL, where q is the
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wave vector, p, is the superfluid density, and L is the
density of the spontaneous orbital momentum of the A
phase. The value of L as determined by Cross'? as
well as by the present authorf® turned out to be of the
order of p,(T./€x)?. Allowance for the dissipative pro-
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cesses in the calculation of Cross and Anderson'*’ has
shown that orbital waves with quadratic dispersion are
strongly damped because of the smallness of L in com-
parison with the coefficient p of the viscous forces
(u=(n?/128)(Np7AYT)/T, near T,, where r is the relax-
ation time in a normal Fermi liquid and Ny is the
density of states on the Fermi surface). We shall show
that in the A phase there is a temperature region near
T., where the quadratic dispersion of the orbital waves
turns into linear at sufficiently high frequencies (but
within the limit w < 1/r of the validity of hydrodynam-
ics), and the damping of these waves becomes weak.

The quasiequilibrium state of the A phase of He® is
characterized by the local rotation of a triplet of vec-
tors (a’, &%, 1) which describes the order parameter
of the Anderson-Morel axial state, relative to the
equilibrium position, through an angle 6(r, t). The
equation of motion for 8 follows from the equation for
the change of the angular momentum 6L

H JoF 2
sL=-20 -
37 wé, (1)

where F is the free energy, and the second term in the
right-hand side is the moment of the v1scous forces,
calculated in"!, and 8, is the projection of & on an axis
perpendicular to 1. The change 0L of the angular mo-
mentum is due both to rotation of the spontaneous angu-
lar momentum L through an angle 5, and to the ap-
pearance of an induced angular momentum proportional
to the angular velocity of rotation 8:

oL -[6L]+ %5 (@)

Let us determine the tensor ¥ in the weak-coupling
approximation. We note to this end that the rotation
of the vectors triplet (A’, A’ 1) through an angle §
leads to the following change in the phase of the order
parameter:

JoA_ kfod) (0d0) 3)

A R Ty

This change of phase is equivalent to adding to the
Hamiltonian the term

¢k=[

1. -
F¢=fd3r§ Eq(r, l)+—21— (kV)@(r,t}} Rty t) 4)

just as inthe ordinary superfluidity, except that ¢ depends ‘

onthe direction of the momentum k. The coefficient of
~7 in the right-hand side of (4) has the meaning of the
angular momentum, so that the variation of the density
of the angular momentum is

[y] -
2fki}2

Under local equilibrium, the particle distribution func-
tion is n, =% — (3)(¢,/E,) tanh(E,/2T), where E, = (£3
+18,12)!/2 is the quasiparticle energy (no account is
taken here of terms odd in k, which do not contribute

SLr,t) = Elka"k(" t), 1 =
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to 6L).
Substituting
sﬁ dn
Sn, = Ik, k 5| A |2
k
afk 2 gia k

in (5) and recognizing that variation of the modulus of
the order parameter is 814,12=24%T)(k- 1)@, [k

x1]}, we obtain for SL expression (2) with the following
values of the tensor % and the vector L:

e "“M (6)
! {ki}*
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The last equation was obtained in'®? with the aid of a
matrix kinetic equation.'™ Let us consider the com-
ponents of the tensor %Y. The longitudinal part of the
tensor is y, = Np/4. With the aid of this expression we
can verify that the longitudinal component of Eq. (1) is
a continuity equation. Indeed, the phase of the con-
densate is ¢,=6,, and therefore

We note that such a dependence of 6L, on bp could
lead to the conclusion that the spontaneous angular
momentum is L=#pl/2, as proposed by Hall,®i.e.
all the pairs have an orbital angular momentum 1 in the
same direction. This conclusion does not contradict in
principle the results oft3? and the present results, since
the change of the angular momentum calculated in these
studies is the result of a local deviation of the system
from the equilibrium position. However, Hall’s con-
clusion that it is precisely the angular momentum L
= fipl/2 which enters in expression (2) is incorrect,
since Eqs. (1) and (2) with 7=0 can be obtained directly
from the matrix kinetic equation with allowance for the
self-consistent equation for the order parameter. In
this case we obtain for ¥’ and L expressions (6) and (7).

We now consider the transverse component of the
tensor

Q1

4 [

The integral with respect to the angles diverges log-
arithmically. The divergence is caused by the fact that
the expression for y, is no longer valid in the region of
k where the gap A,=A(T)|[kx1]| becomes comparable
with the frequency w. Therefore, restricting the in-
tegration to the angle region |[kx1]} >w/A(T), we ob-
tain

N
x - 2E

N, 2 ®

Calculation by the matrix kinetic equation method
with T=0 yields in place of In(A(0)/w) the complex
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quantitiy In(A(0)/w) + (m/4). The imaginary part re-
sults from the possibility of excitation production at
arbitrarily small w, since the gap in the excitation
spectrum vanishes at k || 1. If In{A(T)/w)>>1, the
contribution made by this imaginary increment to the
damping of the orbital waves is weak. Let us deter-
mine the frequencies and temperatures at which we can
neglect the viscous term - iwpf, in Eq. (1). Compar-
ing it with the dynamic term w?y 6, we obtain the fol-
lowing bounds of the frequency

L e b, (9)

T XL
The left-hand inequality should ensure applicability of
hydrodynamics. The inequalities (9) are compatible at
A(T) <[(16/7%)(T./7%) In(A(T)/w)]} /2~ 0. 27T, In'/3(A(T)/
w), if 7 is taken, just as in'*), from the data on spin
diffusion (r~2x1073/7T°%gec). Consequently weakly
damped waves are possible at T, - T'<10%7,. We write
down the equations for the orbital waves in the fourth-
sound regime (v,=0), using the expression for the free
energy F from'!!

mle'ol =Py (249, ¢+ 1297 +q¢%) fz] ,

. 8
(10)

2 Ps 2 2 3
@ Xl ‘bn = E"ﬂ-](q" + qu. )4% + qu qj.eL] :

We see that the orbital waves are coupled with the den-
sity oscillations. They can be decoupled only if In(a(T)/

Lw)>»1, i.e., if x,>>x,. In this case the dispersion of

the orbital waves is given by

Ps, 292 + 3q?
0= g2 9t o9

2 2 (11)
8mXx, Zq_L t4q,
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