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We investigated experimentally the charge exchange of He*, Ne*, and Ar” in internal excited states 4d *5s°
Dss25, of Cd 11 and 3d°4s? 2D;;, of Zn II in the energy interval 2-400 eV. It is established that the
interacting particle pairs are characterized, at appreciable energy defects ~ 7eV, by high energy-transfer
efficiency (~107'® cm?) and their charge-exchange cross sections exhibit a qualitatively different behavior at
low energies. Calculation shows that the charge exchange makes a noticeable contribution to the population
of the upper laser levels for A = 4415 A He-Cd lasers and A = 5894 A He-Zn lasers.

PACS numbers: 34.60.+z

The investigation of charge-exchange processes at
low energies is of interest in collision theory and is of
practical significance for laser-plasma physics. Many

lasers are based on metal vapor mixed with inert gases.

For many of them, the inverted population is produced
via charge exchange of the inert-gas ions at low ener-
gies in a Penning reaction. %!

We report here the first investigation of the charge
exchange of helium, neon, and argon ions on the inter-
nal states of Cd II and Zn II. The measurements were
made by a beam procedure using the apparatus de-
scribed in®, The inert-gas ions were extracted from
a plasmotron source and sorted with a cylindrical ca-
pacitor, while the Cd and Zn target atoms were ob-
tained in a vapor-filled cell,

The principal excitation channels in the charge ex~
change are represented by the scheme

A +(B*)*+ AE, (1)
A* +B <

AT+ (BY*+ e - AE, , 2)

where A* stands for He*, Ne*, or Ar* and B stands for
Zn or Cd.

The reaction via channel (1) for He*, Ne*+Zn, Cd at
+AE); is charge exchange of exothermal type, while for
Ar*+Zn, Cd at — AE, it is of the endothermal type; the
reaction (2) characterizes impact ionization with ex-
citation, The laboratory-frame energy defects AE for
internal states excited by the ions He*, Ne*, and Ar*
are listed in the table.

Figure 1 shows the main experimental resuits on the
charge-exchange cross sections of slow singly-charged
ions of helium, neon, and argon with cadmium and zinc
atoms, with excitation of the internal states
4d°®5s% 2D, <, of CA II and 3d°4s® 2D; ), of Zn II. The
absolute values of the charge exchange cross sections
‘were determined directly in this experiment from the
electron excitation. ! The error in the absolute cali-
bration is +20% and the relative-measurement error is

3%.

Exothermal charge exchange for the He* +Cd pair
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(Fig. 1a, curves 1 and 2) is characterized by high effi-
ciency, ~1071® ¢cm? at the threshold, and by a somewhat
lower value ~10°'" cm? for He*+ Zn (curve 3); for both
pairs, the cross sections increase in the region of low
energies, The charge exchange Ne*+Zn, Cd (Fig. 1b),
although also exothermal, differs fundamentally in its
behavior from the He*+ Zn, Cd pair, the main difference
appearing both near the threshold and at high ener-
gies.

Thus, for exothermal charge exchange at low ener-
gies, the behavior of the cross sections is determined
essentially by the properties of the interacting parti-
cles.

The charge exchange for the endothermal reaction Ar*
+Zn, Cd (Fig. 1c) differs in its behavior from the exo-
thermal one. The course of the curves in Fig. 1c, in
the region 2-150 eV can be attributed to exchange in-
teraction, i.e., to pure charge exchange (reaction 1),
and the subsequent growth from 200 eV is obviously due
to the turning on of reaction 2. Comparison of the
charge-exchange effectiveness in the threshold region
for cadmium (curves 1 and 2) indicates that a very im-
portant role is played in the exchange interaction by the
screening, as a result of which the d-electron of Cd is
weakly bound to the nucleus, and the exchange is facil-
itated.

The experimentally observed behavior of the charge
exchange cross sections in the internal of Zn II and Cd II
cannot be described by the known theoretical formu-
las derived for the ordinary ionic states of Zn and
cd. 61

On the whole, analysis shows that the process of

AE,. eV AE,. eV

A, A Transition

He* | Ne* | Ar* ||He

4415 4d%5s2

.55 2R, Califl+7.2]+ 47|~ 2.5~ 18,2}~ 20,7| -23.8

3250 4d 9552 ?l)masp 2pe Gl ]1+6.5) + 3.9] -3,4)1-18.9 [-21.5] -24,8
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FIG. 1. Charge exchange cross sections of He' (a), Ne*, and Ar® (c) with Cd and Zn atoms with excitation of the following internal

lines: 1) 4415 A of CdII, 2) 3250 & of Cdil, 2) 5894 A of Zn II.

charge exchange with excitation of the internal electron-
ic states of Zn II and Cd II by He*, Ne*, and Ar* ions is
characterized by a highly variable behavior of the
charge exchange cross section and is not as selective

as hitherto assumed. '"~19 This raises, in particular,
the question of theoretically describing the near-thresh-
old behavior of the charge-exchange cross section and
of a more complete explanation of the exchange-inter-
action mechanism.

The experimental data obtained in this study were
used to determine the role of charge exchange in He-Cd
and He-Zn lasers. Calculations based on the kinetic
equations show that charge exchange makes a contribu-
tion of about 10% to the population of the upper laser
levels for the 4415 A and 5894 A lines of the He-Cd and
‘He-Zn lasers. This makes it possible to regard charge
'exchange as a competing process on a par with
electronic excitation and the Penning reaction in a
laser.
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