Possibility of the existence of X mesons of a new type
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It is shown by a numerical experiment for a scalar field with spontaneous symmetry breaking that three-
dimensional soliton-like systems exist. Such objects could be revealed in experiment as heavy long-lived

mesons,

PACS numbers: 14.40.—n, 11.10.Qr

Many authors have discussed the hypothesis accord-
ing to which the classical solutions of relativistic equa-
tions with degenerate vacuum can describe hadronic
states. =31 In particular, Shapiro has proposed that

solutions of this type describe mesons. ! For the one- -

dimensional case, there are known both fully stable
(soliton) and quasi-stable (soliton-like) solutions, [5=73
In a real three-dimensional case, however, neither sta-
ble nor quasi-stable solutions have been obtained so far,
with the exception of the solutions of the monopole type,
which do not go over into the ordinary vacuum at infini-
ty. ¥1 We describe here the results of a numerical ex-
periment that shows that inthe case of afield with two vac-
uums there exist pulsating quasi-stable three-dimen-
sional solutions with the usual vacuum at infinity; their
properties differ significantly from the properties of
the one-dimensional solutions. =7} Such objects can
correspond to heavy mesons with zero spin.

We consider the equation

2
2 —Au=—4A2u(u2-112), (1)
ae?

which has two vacuum solutions » =+ 1 with zero energy.
We are interested in a solution of the bubble type, ©*
which is close to one of the vacuums everywhere except
for a finite singly-connected region, inside of which it
is close to the second vacuum. The energy of the bub-
ble is concentrated in the transition layer (wall) be-
tween the vacuums.

The collapse of a spherical bubble was considered
in'®? in the approximation B> I, where R is the radius
of the bubble and ! is the wall thickness (I~1/x7). 1t is
easy to show that in this approximation the equation of
motion of the wall is

&R 2 dRy
2 —[1 -(—)} -0. (2)
dt? R de
Solving (2), we obtain
R=R.0n(\/21,l', (3)
R, 2

where cn(x, 1/2) is the elliptic cosine with modulus %2
=1/2. The expression {3) described satisfactorily the
contraction or the expansion of the bubble, but since it
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is not valid at R~1, Eq. (3) cannot describe the transi-
tion from contraction to expansion. To ascertain the
possibility of such a transition, which would lead to a
pulsating behavior of R, we turn directly to Eq. (1).

The problem was solved numerically by the straight-
line method, i.e., by reducing the partial-differential
equations (1) to a system of ordinary differential equa-
tions specified on the straight lines t=nk (#=1,2,...,h
is a constant chosen to be the time interval). The trans-
fer of the boundary conditions from the singular points
r=0 and 7= = to the finite points »; and v, was realized
for the entire system as a whole using the method de-
veloped in'®), To solve the nonlinear boundary-value
problem, a converging interactive process, analogous
to the one described int%, was used on each line. The
linear boundary-value problem was calculated in each
iteration by the Abramov stable run-through method.!"!
The integral of the energy and the fluxes at the points
7y and 7., were calculated on each straight line.

By means of similarity transformations, Eq. (1) re-
duces to the case A =1, =1, which will be discussed
from now on. We choose the following initial conditions:

urr, 0) =thyZr =R, ),  u,(r, 0) =0.

The results of numerical calculations with Ry=5 are
shown in the figure. At 6<{<8 the function » has an
overshoot in the vicinity of »=0 with #,,,~3.9, after
which an expanding bubble appears again. At 1=10.8
it stops again. We note that the function # vanishes at
that instant of time at the point R,=3. The backward
motion of the bubble to the center is noticeable already
at 1=11.5.

The large difference between R, and R, (the initial
radius) is attributed to the loss of the energy integral.
The energy, equal to E,=6X 10% at the initial instant, is
quite well preserved up to £~4, and then decreases rap-
idly at 4 <7<9to E,=2.4%x10?% after which it again sta-
bilizes to the end of the calculation., We note further
that E,/E,~RE/R¢, from which so large a decrease of
R follows. It is important that the decrease of E is not
due to radiation; the total radiated energy is equal to 9
X 1072, As seen from the diagrams shown in the figure,
the energy integral is lost at large 9x/9¢, this being due
to the low accuracy with which the time derivatives are
calculated in the program {accurate to the time inter-
val /7). We also verified the dependence of the solution
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on 7,: an increase of 7., by 1.5 times (from 8 to 12)
did not affect the function « at all. Thus, the existence
of pulsations can be regarded as established.

The behavior of the solution at 6 << 8 can be qualita-
tively described with the aid of the following reasoning.
We dissect the bubble along the diameter and consider
its opposite walls. We assume that they pass freely
through each other, retaining the shape at which they
have approached the center. Then it can be readily
seen that the function « has a plateau at the level u= 3~
4. This state has a constant energy density €, and
therefore the potential energy of this state will in-
crease like L%, where L is the distance by which the
walls became separated after they passed through each
other; it is clear that the walls must ultimately stop,
and then reverse their motion. If it is assumed that
the radiation is small, then the maximum value L_,, is
determined from the equation uR2= L%+ (e/3)L?, where
p=(4v2/37® is the surface energy density of the bub-
ble; it follows therefore that

L~ R V7R, . (4)

Similar reasoning is valid also in the one-dimensional

case. ™ It is important that the three-dimensional solu-
tions considered here, unlike the one-dimensional ones,
have no limitations on the system mass. In the solution
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obtained by us Ry>> [, but solutions with Ry~ are also
possible and correspond to the systems obtained in'*~"7,

We note that in theories that have at least three
equidistant vacuums (as, e.g., in the Gordon sine equa-
tion), the same reasoning leads to the conclusion that
the walls jump freely through each other, the transition
from contraction to expansion being essentially differ-
ent, To describe the transition in such theories it is
natural to use (3), in which case Rygery= | RI.

To estimate the bubble pulsation period T in the theo-
ry with spontaneous symmetry breaking we can use (3),
from which we get T~ 3R,. In this case we neglect the
reflection time, which is small by virtue of (4). Un-
fortunately, the loss of the energy integral does not
make it possible to find the bubble lifetime 7, but judg-
ing from the flux of the radiated energy it is larger than
T by many orders of magnitude. The bubble radius is
connected with its mass by the relation M= (167V2/3)
Xxn°RZ, from which it follows that T=0. 6V M/r7>.

Since 7> T, the lifetime may turn out to be much larg-
er than nuclear even at A=1 and 7=m,. We note that
quasiclassical quantization of the bubble oscillations
yields a mass spectrum with a state density dn/dE~T

~VM.

We note in conclusion that if the model of Drell et
al. ™1 ig valid, in which the ordinary hadrons are re-
garded as bubbles with quarks locked into their walls,
then the mesons discussed here must inevitably exist.

The authors thank T. A. Belova for great help with
the computer calculations, and A. E. Kudryavtsev for
useful discussions.
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