where AT is the temperature difference between the cylinder axls and its wall,
and k is the thermal conduct1v1ty coefficlent of the gas. We assume that a le—
ture of xXenon and helium is used to increase the thermal conductivity, with Phe

>> Pyes 80 that k = kp (KHe = 4 x 107* cal-deg ™ 'sec”'em-!). The capillary diam-

gtgg at AT = 200°K, K = 0.05 cm™! (Weoq = 5 x 10°% W-cm™2), and n = 0.5 is then
.05 mm,

We note that the presence of helium changes the time T and leads possibly
to other effects, for example to the appearance of the HeXe ’t* molecule and of
a new emission band; relations (2) will remain in force, however.

The development of a molecular xenon laser 1s perfectly realistic. The use
of other nlee gases for this purpose may encounter serious difficulties due to
the rapid increase of T rad ©n going to lighter atoms. In principle, one cannot

exclude the possibility of lasing with molecules of the type ArXe, KrXe, etc.
produced in collisions Ar’P + Xe 'S, + M, Kr 5P + Xe '8, + M, etec. The time
rad of such molecules may be shorter than the time of the radiative transi-

tion *P - 1S, in atoms, since the presence of xenon should contribute to viola-
tion of the Wigner rule. Several elementary processes that lead to the excita-
tion of noble-gas atoms and to the formation of diatomic molecules by passage
of an electron baam through a mixture of argon and krypton or xenon were in-
vestigated in [6].

We can expect lasers of this type to have high efflclencg and power, and
to be tunable in a relatively wide frequency range (5000 cm—
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Andronikashvili, Chigvinadze, et al. [1 ~ 4] have tested in their experi-
ments an original currentless procedure for the investigation of pinning forces
and vortex interactions in type-II superconductors. In these experiments, a
superconducting cylinder in the mixed state [5] executes small axial oscilla-
tions in a magnetic field perpendicular to the cylinder axis, and the dependence
of the frequency and the damping decrement of fthe 030111at10ns on the fileld,
temperature, sample purity, and other factors 1s measured (Fig. 1, where bhe
curves are taken from [4]).

The author has advanced elementary theoretical considerations that explain
the unusual character of these relations (the damping in the superconducting
state is larger than in the normal statel!). The lncrease of the oscillation
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frequency in the mixed state (Fig. 1) is evidence of the presence of a "frozen-
in" magnetic field in the sample; this field 1is produced by Abrikosov vortices
pinned by various defects [5]. It turns out that the assumed presence of free
and pinned vortices suffices also to explain the dependence of the damping coef-
ficient I' on the magnetic field.
. >
The energy of the superconductor in an external magnetic field Ho 1is (see

[5, 61

N,mv? (h-H)?
- de[ el (1)

8n

where m is the mass and Ns the density of the superconducting electrons, Vs is

the velocity of the superconducting condensate, and ﬁ,is+the+magnetic fielg. To
calculate the integrals in (1), 1t is convenient to put h =+ho + hY where ho =
Bo + Vy (V29 = 0, 9(=) = 0, (Hy, + 3¥/3n) g = 0, ¥ = R2Ho+¥/r?) is the external

field produced by the boundary field*Ho and failing to penetrate into the cylin-
der becguse of the Meilssner effect; h' is the field produced by the vortices,
viz., 'hin inside the cylinder and

- ’ , . d ‘. _ ’ Br
b v e (A0, w0, SE] - By o oRS)

r=R r

outside the cylinder. Then, for example, the integral (HW)’I_/ndVﬁ'(Ho - ﬁo) is
equal to

h'th, -H,) BH div(h“y) BH

fdV et e V=T [ AV = = Ve
4n 47 (4u1) n 2n

]

(V is the volume of the cylinder). Here § is the magnetic %nductio inside the
superconductor and 1is equal to the mean value of the fleld h': = P + Bg,

= = = — —_ 1 = 3
Bp np@o, Bp = ngly, By By, cos(8 - ¢) + Bs cos(8 - ¢'), where &, = mhe/e is
the magnetic-flux quantum, np and np are the densities of the pinned and free

vortices. The remaining symbols are clear from Fig. 2, which shows the cross
section of a cylinder of radius R; ¢ is the angle of rotation of the pinned
vortices and coincides with the angle of cylinder rotation; ¢' is the angle of

(wiw)sec™? %l‘. w’
47 mo
974 a0
g1
40
0,06
10 Ho
402 -
o] 60
-0,02}¢ .
1 L 4 Sol
7 i g s00 07, Oe
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rotation of the free vortices. It is assumed that the oscillation amplitude is
small enough and the vortex filaments remain approximately straight.

Inside the superconductor, the quantities ht and v satisfy the Londons'
equations 5

4n e
rd rd
rothin = _C_Nsevs otv, =- ;c—hin

with the vortex filaments determined as singular solutions of these equations,
subject to the quantization rule [5]

$v dt =at/m,
C'-> 0

where Cr is an infinitesimally small contour surrounding the filament. There-

. . -+ -> -
fore, separating in natural fashion ﬁin =h +h.andv. =¥ + 7

D £ s sp sf? and inte-

grating by parts, we get

h? N mvz,
dV[-_ T ’J dV ———div(h,x v, )

urn) 87 2 “(in) Bwe =
) B2
o - f
- s - - _

8~ ifff e (x; rk)d{‘ V(‘°n‘+ 817)'

where € = ¢0h(0)/8v = @OHcl/Mﬂ is the logarithmically large {(vink, Kk >> 1 is

the parameter of the Ginzburg-Landau theory) is the self-energy of the vortex
per unit length [5].

The remaining integrals on (1) are calculated in similar fashion, and the
following potential, accurate to sonme insignificant constants, is obtained for
the interaction of the cylinder and the external field

v 0: , BPB, (Bp+ B,H
U= € ng + -;‘—"n, + - .

2n 2n

(2)

The motion of the free vortex filaments relatlive to the superconductor is
accompanied by an energy dlssipation described phenomenologlcally with the aid

of the viscosity coefficlent of the vortices [8]: n = @Ooanz/c2 (cn is the

normal conductivity of the sample). It is easy to calculate the corresponding
dissipative function ¥ and the oscillation damping coefficient T:

1, o v nRY - 6°)? L
- —E émecg v . [an, = an —-—-——-4—_____ VL = R(¢:_ ¢)
¥ 2R - $2
r=r z -
o mech Fo v Vs 41 g2 (3)

vy, is the velocity of the vortex-filament element relative to the superconduc-—
tor, I is the moment of inertia of the vibrating system, and Te is the damping
due to other mechanisms.
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Since the relaxation time of the free vortices is of microscopic order of
magnitude and is small, the angle ¢' in the potential U [Eq. (2)] is determined
at each instant of time from the equilibrium condition

U/ 34" = 0. (1)

As to the density ne of the free vortices, it 18 apparently possible to have here

either a slowing down of the relaxation, when the additional vortices do not
have time to penetrate inside the sample during the oscillation, owing to the
large surface barrier, or the opposite case of fast relaxation.

1. In the first case ne = const. An elementary calculation with the aid

of the equation of motion I(§ +wji¢) + (3U/3¢) = 0 and relations (2), (3), and
(4) yields, in an approximation in which the amplitudes of ¢ and ¢' are small,

(1 B(H, )
VH BH,) P\~ TH
oWl B(H)=B_+ B
w oy + 37 B{H, (o) p f
~¢c —— <9
P H°
ror . YRWHLBH) e B B
= 4 — c = —P. ="
° 4fc? BH,JY P B(H,) ' BH)
(l'c" H

o

where wg is the zeroth osecillation frequency and 1s connected with the elastic
properties of the vibrating system; B(He) is the equilibrium magnetlc induction
and can be determined from the Abrikosov magnetization curve [5]%

2. In the opposite case of fast relaxation, the density Na should also be
determined from the equilibrium condition BU/an = 0, Calculations similar to
the preceding ones yield for fields that are not too weak, H >> Hcl’

, Ve, n,
0wt = 0t + ——
) 1- d’onp (6)

H

o

Vchv"Hc2 1

I'=I" + 3 .

° 4fc 1- ‘D’;n

In formulas (5) and (6), n, * 0 as HO >~ H 5 (B ~ H, ), the sample goes over

into the normal state, and the damping due Eo thezvortlces goes over into damp-
ing by the eddy currents, with T ed = VR%0 H /MIC

It is seen from these formulas that in the general case a peak due t9 the
denominator 1 - Bp/HO is superimposed on the monotonic growth of the damping

coefficient I' v B(Hg) or ' ~ Hg. In case (6) this peak is directly connected
with the frequency peak:

1)When this curve 1s plotted for a cylinder in a transverse field, it is
necessary to take the demagnetization factor into account.
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r-r H (X )
o=_ng+’ 0(02_0‘2,).
c2 Ve H

o €2

From the physical point of view, the additional absorption is due to the
repulsion of the free vortices from the pinned ones, which increases the oscil-
lation amplitude of the free vortices relative to the superconductor and cor-
respondingly increases the loss to viscous motion of the vortex filaments.
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Let a superconducting film of thickness d >> Lo, A (Lo and X are the co-
herence length and the field penetration depth, respectively) form a tunnel
Junction with some superconductor, and let an alternating magnetic field Ho
cosw be applied to the external surface of the film. At small w the field does
not penetrate into the Jjunction under such conditions, and the film superconduc-
tivity parameter A is equal to its equilibrium value Ay in the region of the
Junction. If w = Ao, however, the situatlon may be somewhat different. It is
shown in [17] that the superconductivity parameter of a bulky type-I supercon-
ductor is changed by the action of the alternating field of frequency A¢ up to
distances on the order of the mean free path & from the surface, in accordance
with the formula

Afr, t) 1 ezHoz

Ao 2c2q4 ln.r— cos 2A°, =1- g(r)COSZAo’ (l)
°

with o < r < %3 go is the characteristic Pippard momentum [2]. It is assumed
that in the absence of the field the superconductivity parameter has the same
value near the surface as in the interior of the superconductor. Therefore, if
the thickness d = & >> o, and w = Ay, then the tunnel current is modulated at a
frequency 243, even though the alternating field does not penetrate directly
into the Jjunction. This is precisely the effect considered here.

As is well known, the tunnel current is expressed in terms of temporal
Green's functions integrated with respect to the energy (cf., e.g., [3], for-
mula (6)). The high-frequency electric fleld does not act dlrectly on one of
the superconductors of the junction, the equilibrium value of the gap is Ad,
and the change of the Green's functions of the film in the region of the
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