"Ghost" anomaly in the reactions ¹²C (d, ⁶Li)⁸Be and ¹³C (d, ⁷Li)⁸Be

V. N. Dobrikov, O. F. Nemets, and A. A. Shvedov Institute of Nuclear Research, Academy of Sciences of the USSR

(Submitted 22 October 1981)

Pis'ma Zh. Eksp. Teor. Fiz. 34, No. 11, 624-626 (5 December 1981)

An experimental angular distribution of the "ghost" anomaly in a nuclear reaction with ⁸Be has been observed for the first time in the outlet channel.

PACS numbers: 25.50. - n

The anomaly in the energy spectrum of deuterons and of α particles in the nuclear reactions ${}^9\mathrm{Be}(p,d){}^8\mathrm{Be}$ and ${}^{11}\mathrm{B}(p,\alpha){}^8\mathrm{Be}$ at $E_p=5.205$ MeV, which was first observed by Beckner et~al., 1 has been analyzed by many authors. ${}^{2-4}$ This anomaly, which is localized in the excitation region of ${}^8\mathrm{Be}$ nucleus, $E^*=750$ keV, has been observed in the reactions ${}^6\mathrm{Li}({}^3\mathrm{He},p){}^8\mathrm{Be};{}^7\mathrm{Li}(\alpha,t){}^8\mathrm{Be};{}^6\mathrm{Li}(\alpha,d){}^8\mathrm{Be};{}^9\mathrm{Be}(p,d){}^8\mathrm{Be};{}^9\mathrm{Be}(d,t){}^8\mathrm{Be};{}^{10}\mathrm{B}(p,{}^3\mathrm{He}){}^8\mathrm{Be};{}^{10}\mathrm{B}(\alpha,{}^6\mathrm{Li}){}^8\mathrm{Be};{}^{10}\mathrm{Be};{}^{10}\mathrm{Be};{}^{10}\mathrm{Be};{}^{10}\mathrm{Be}$

We have studied the energy spectra of 6 Li from the reaction 12 C(d, 6 Li) 8 Be at E_d = 12.7 MeV, 13.2 MeV, and 13.6 MeV and the energy spectra of 7 Li ions from the

Fig. 1. Energy spectra of $^6\text{Li}(a)$ and $^7\text{Li}(b)$ from the reactions $^{12}\text{C}(d,^6\text{Li})$ ^8Be and $^{13}\text{C}(d,^7\text{Li})$ ^8Be . (a) Peak 1— ^6Li from the reaction $^{12}\text{C}(d,^6\text{Li})$ $^8\text{Be}_{\text{gr}}$, peak 2— ^6Li from the reaction $^{12}\text{C}(d,^6\text{Li})$ $^8\text{Be}_{\text{gr}}$, peak 1— ^7Li from the reaction $^{13}\text{C}(d,^7\text{Li})$ $^8\text{Be}_{\text{gr}}$, peak 2— ^7Li from the reaction $^{13}\text{C}(d,^7\text{Li}_{0,477})^8\text{Be}_{\text{gr}}$, peak 3— ^7Li from the reaction $^{13}\text{C}(d,^7\text{Li}_{0,477})^8\text{Be}_{0,750}$, peak 4— ^7Li from the reaction $^{13}\text{C}(d,^7\text{Li}_{0,477})^8\text{Be}_{0,750}$.

Fig. 2. Differential cross sections of the reactions. $O^{12}C(d,^6Li)$ ⁸Be, $\bullet^{12}C(d,^6Li)$ ⁸Be_{0.750} for $E_d=13.6$ MeV.

reaction 13 C(d, 7 Li) 8 Be at $E_{d}=13.6$ MeV. The self-sustaining 12 C films and carbon films 53%, enriched by 13 C isotope were used as targets. The targets were $\sim 40\text{-}70$ $\mu\text{g/cm}^{2}$ in thickness.

The angular distributions of ^6Li from the reaction $^{12}\text{C}(d, ^6\text{Li})$ ^8Be and ^7Li from the reaction $^{13}\text{C}(d, ^7\text{Li})$ ^8Be were measured using the time-of-flight method to identify the heavy charged particles. 6 Figures 1a and 1b show the energy spectra of ^6Li from the reaction $^{12}\text{C}(d, ^6\text{Li})$ ^8Be and the energy spectra of ^7Li from the reaction $^{13}\text{C}(d, ^7\text{Li})$ ^8Be . With an energy resolution $\Delta E_{6\text{Li}} = 130~\text{keV}$ for ^6Li and $\Delta E_{7\text{Li}} = 150~\text{keV}$ for ^7Li , we see that the width of the $^8\text{Be}_{0.750}^*$ state in the reactions in question is $\leq 150~\text{keV}$. This allows us to assume the existence of a single level of a ^8Be nucleus with an excitation energy $E^* = 750~\text{keV}$.

Fig. 3. Energy dependence of the reaction cross sections. $\diamondsuit - ^{12}\text{C}(d,^6\text{Li})$ $^8\text{Be}_{\text{gr}}$, $\spadesuit - ^{12}\text{C}(d,^6\text{Li})$ $^8\text{Be}_{0.750}$ for $\theta_{\text{l.s.}} = 20^\circ$.

Thus, assuming that the reactions 12 C(d, 6 Li) 8 Be and 13 C(d, 7 Li) 8 Be are two-particle reactions, we can obtain experimental angular distributions for the processes in which the state of a 8 Be nucleus under investigation is formed. Figure 2 shows the angular distributions of 6 Li from the reactions 12 C(d, 6 Li) 8 Be and 12 C(d, 6 Li) 8 Be_{0.750}. The relative errors of the measured differential cross sections vary in the range 9% to 20%. Since the energy of 6 Li decreases markedly with increasing angle of emission, the differential cross sections of the reactions were measured only in the range of angles $\theta_{1.s.} = 11.5^{\circ} - 72.5^{\circ}$.

The angular distribution of ^6Li from the reaction $^{12}\text{C}(d,^6\text{Li})$ ^8Be was studied by us previously. Assuming that direct processes play a key role in the reaction $^{12}\text{C}(d,^6\text{Li})$ ^8Be at $E_d=13.6$ MeV, we analyzed the differential cross sections of this reaction in terms of the model for the capture of an α particle using the zero-radius approximation in the distorted-wave method. It was shown that the calculated values of the differential cross sections are in satisfactory agreement with the experimental data.

For the reaction 12 C(d, 6 Li] 8 Be_{0.750} the differential cross sections in the region of angles $\theta_{c.m.s.} = 12^{\circ} - 50^{\circ}$ are similar in their structure to the angular distribution for the reaction 12 C(d, 6 Li) 8 Be. This allows us to assume that the formation of the excited state of a 8 Be nucleus— $E^{*} = 750$ keV—occurs in the direct process.

The energy dependence of the cross section for production of the Be nucleus in this state was measured in a narrow range of deuteron energies $E_d = 12.7 - 13.6$ MeV. A comparison of the ground state of a ⁸Be nucleus from the reaction ¹²C(d, ⁶Li) ⁸Be shows that the excited state of this nucleus is similar to its ground state (Fig. 3).

In summary, the existence of an excited state of a 8 Be nucleus with E * = 750 keV is justifiable experimentally.

Translated by S. J. Amoretty Edited by Robert T₁ Beyer

¹E. H. Beckner, C. M. Jones, and G. C. Phyllips, Phys. Rev. 123, 255 (1961).

²E. H. Berkovitz, G. L. Marolt, A. A. Rollefson, and C. P. Browne, Phys. Rev. C4, 1564 (1971).

³K. T. Lorentz, Z. Naturforch. 21a, 1196 (1966).

⁴B. Leidman, H. T. Fortune, and A. Richter, Phys. Rev. C2, 1612 (1970).

⁵F. C. Barker, G. M. Crawley, P. S. Miller, and W. F. Steele, Austral. J. Phys. 29, 245 (1976).

⁶V. N. Dobrikov et al., Prib. Tekh. Eksp. No. 2, 41 (1974).

⁷A. S. Gass et al., Izv. Akad. Nauk SSSR, Physical Series, 38, 873 (1974).

⁸R. M. Drisko, G. R. Satchler, and H. R. Bassel, in: Proc. of the Third Conf. on Reaction between Complex Nuclei, Asilomar, 1963, University of California Press, Berkeley, California, 1963.