ELECTRIC LONGITUDINAIL RESONANCE IN SEMIMETALS AND DEGENERATE SEMICONDUCTORS

N.B. Brandt, M.I. Kaganov, and A.S. Mikhailov

Moscow State University

Submitted 24 October 1972; resubmitted 11 January 1973
ZhETF Pis. Red. 17, No. 3, 150 - 154 (5 February 1973)

When the electron mean free path % 1s much larger than the plate thickness
d and the reflection from the boundaries 1s specular, the electrons execute
a periodic motion between the plate boundaries. The period of this motion is
determined by the projection v_ of the electron velocity on the normal to the
plane of the plate. Z

The periodicity of the motion leads to quantization of the z-component of
the electron momentum. This quantization 1s manifest in a number of oscillatory
phenomena (both kinetic and in thermodynamic equilibrium). However, since the
distances between the quantum energy levels are very small, all these phenomena
are observed either in very thin films, or at ultralow temperatures T

T(°K)d (em) < 10-3

We shall show in this article that in relatively thick plates (but, of
course, satisfying the condition £ >> d), there should be observed a classical
resonance effect due to the Landau damping [1] and to the existence of extremal
values of VZ brought about by Ferml degeneracy.

Assume that a longitudinal alternating electric field of frequency w and
amplitude EO (EX = Ey = 0, EZ = EO) is applied to the plate. We are interested

in the longitudinal complex admittance of the plate. To calculate it we must
solve a system of guasistabtic equations (the Boltzmann kinetic equation and the
equation of electrostatics). Using the contlnuity equation, we easily find that
in the interior of the plate
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where jz(z) is the complex current density. Since jZ(O) = jz(d) = 0 (0 and d
are the coordinates of the plate boundaries), the fleld on the two boundaries
colncides with the applied field.

We leave out the collision integral from the kinetic equation, assuming
that wt >> 1 and &/4 >> 1 (1 = R/VF and Ve is the Fermi velocity of the elec-

trons). To solve the kinetlc equation 1t is convenlent to expand all the func-
tions in terms of sin(mnz/d) (n = 0, 1, 2, ...) (after first intrcducing a dis-
tribution function fa which is antisymmetrical in z and vanishes on the plate

boundaries; the distribution function that 1s symmetrical in v, can be expressed
in terms of fa). Thus , with the aid of Eg. (1), the kinetic equation, and the

boundary conditions we obtain the connection between the Fourler components of
the current jn and of the field En:

in = op( @) E, (2)
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and vy = /eF76nNez is the Debye-Hlickel radius of the electrons, €n

energy, N the electron density, and e the electron charge. In the calculation
of (3) we have assumed a quadratic dispersion law (the effects of nonquadratic
dispersion will be discussed later on).

the Fermi

The effective dielectric constant €, = 1+ Mﬁion/w coincides with classical
limit of the Linhard formula [2]. Expressing En in terms of Ey we can calcu-
late the energy absorbed by the plate per unit time:
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Changing over from summation to integration, we determine the smooth com-
ponent Q(w) of the frequency dependence of Q(w):
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We note that VF/PD 1s of the same order of magnitude as the plasma electron fre-

quency. The limitation w << VF/rD is there fore immaterial even for semimetals
and degenerate semiconductors.

On the smooth frequency dependence of the absorbed energy there should be
observed singularities near which the "resonant" term in (4) (w = wn) behaves
in the following manner (see the figure)
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a Formula (6) shows that at the
resonance points (w = wn) the deriva-

tive dQ/dw becomes_ infinite on the low-
frequency side, w < w, . The weakness

of the singularity 1s due to the fact
that it 1s determined only by the elec-
trons of the limiting point, at which
v_ = v, (see below).
Z F
w The structure of the electric field
w, w3 ws W, E_(z) and formulas (5) and (6) show that
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the electrons interact effectively with the longitudinal electric field only in
metal layers of thickness T adjacent to the plate boundaries. The entire fore-

going analysis is therefore valid for good metals with r

h S @ (a 1s the inter-
atomic distance).

When assessing the possibility of experientally observing the effects con-
sidered here, we must compare the derived expressions with expressions and esti-
mates that are valid for dielectrics and not for metals. The effective dielec-
tric constant is equal to (rD/d)zln(vF/er).

The characteristic resonant frequency is w; = ﬂVF/d. At d v 0.1 cm and
v v 107 cm/sec (semimetals) we have w; ~ 10° sec™!. It is necessary here to
satisfy the condition w;T >> 1, which imposes stringent requirements on the
sample quality.

Dissipative processes smear out somewhat the singularitiesl) at w = wy and
lead also to an addltional energy absorption by the plate (rD/T)(Eﬁ/uﬂ) at

wt >> 1. This absorption does not depend on the frequency and should serve
therefore as a background in the investigation of Q(uw).

An analysis of the behavior of electrons with an arbitrary dispersion law
shows that the shape of the "resonance'" curve depends strongly on the form of
the Fermi surface. If v, assumes an extremal value at the saddle point, then

a logarithmic dependence 1s obtained on both sides of W - if v, reaches an

extremal value not at a point but on a line on the Fermi surface, then a square
root dependence Q?es (w - wn)l/2 should be observed in place of the loga-
rithmic dependence of Q?e

portional to VEXtr.

s (see (6)). The resonant frequencies are then pro-

The described longitudinal electric resonance may be useful in investiga-
tions of the electron energy spectrum, particularly for a direct measurement of
the conduction-electron veloccities, and also for investigations of the char-
acter of the reflection of the electrons by the plate boundaries. Diffuseness
of the scattering, which upsets the periodicity of electron motion, smears out
the singularities. A relatively weak magnetic field applied parallel to the
plane of the plate may make 1t possible to vary the angle of encounter of the
resonant electrons with the surface (the effect of a magnetic field on the longi-
tudinal resonance calls for a separate study).
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1)’I‘he finite temperature also smears out the singularities. As a rule,
however, the collisions play a more important role.
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