a p?

Oete= oim = oo (W =) (W= 3401+ GW)] | F(W))2
9(27)2 28W3
G(W)\W:B# = 12
2
q
F(W) = F + Be—gp”"gpwn + (8
3 2 2 2
Yooy M m, — 49
SMWu + ¢ 2gpﬂy9p7r77 2egpwngpm q?
+ 3 7 7 2 2| 2
mp . mp Yo Mw mp My =~ q

where W = /ET and the approximations in phase space ig the last integration
with respect to E (which is the energy, say, of the m' meson) are E? - u? =
2u(E - p) and W? - 2WE + u? = 4p2,

We present the values of o(ete™ > 3m) at the point W = 4u for the cases?)

n = %1 and F3Tr = 0.
AN oy = 0.87+10-25 em?,
oly) . noy = 0.85+10-36 em?.
At F3W = 0

Tetem 5 goy = 3.6-10-3¢ em?,

Thus, two independent measurements of the total cross section of the process
ete= » m% at g2 v 0.3 - 0.4 GeV? and of the total cross section of ete— = 3m
near the threshold give a perfectly deflined answer for F3W.

The author thanks B.L. Ioffe for a number of valuable remarks.
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Recent measurements of the cross sections for pp scattering [1 -~ 3] in the
CERN colliding beams at s ~ 500 - 3000 GeV? and their comparison with data

2) We note that if only F3TT is taken into account in (8) we obtain for

g(ete™ » 3m) at W = Uu the value ~0.9 x 107%% cm?, which is smaller by one
order of magnitude than the result of [7]. It seems to us, however, that a
factor 1 was left out from formula (A.20) of [7].
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obtalned earlier [4] with the accelerator of the Institute of High Energy Phys-
ics (IHEP) have revealed two important circumstances:

a) The diffraction cone slope parameter b decreases by ~1.5 GeV™? on goin%
from the reglon of small |t| < 0.15 GeV?® to the region of large |t| > 0.15 GeV

b) b 1s not a striectly linear function of 1n s and varies more slowly.

These two properties of b do not agree with the tradlitional notion that the
predominant role in the elastic-scattering amplitude in the case of large s and
small t 1s played by a Pomeranchuk pole with ap(t) = 1 + a't (this would mean

b = be + 20a' 1Ins, where by and o' are constants).

We shall show in this article that the foregoing pecularities of b can be
explalined wlth the ald of the model proposed by us in our preceding paper [5].
In this model the diffraction-cone parameter 1s given by

d g —
b = TQn Tn_> = b, + cylns/(t, - 1), (1)

where by, and ¢ are constants. It is easy to see that expression (1) has pre-
cisely the required properties: the dependence on 1ln s is slower than linear,
and the t-dependence i1s such that b decreases with increasing t.

The figure shows a comparison of the predictions of the model with the
experimental data. The parameters be = 4.98 and ¢ = 1.23 were obtained by fit-
ting (1) to the largest group of experimental data, corresponding to measure-
ments [2, 3, 6] at small t (the mean value of t for this group is |E]| = 0.69
GeV?). 1In this case x2 = 75. For comparison we show that fitting of the same
data with the aid of a dependence linear in 1In s (corresponding to a Pomeron
exchange) results in yx? = 91.

The obtalned values of bg _and ¢ were used to calculate the curves at ]€| =
0.09, and also at the values Itl = (0.22 and 0.32 corresponding to the measure-
ments made at large ¢t in [1, 2] and [7], respectively. We see that the theo-
retical curves describe well all three groups of the experimental data. The
dependence of b on vIn s makes 1t possible to reconcile the data at s 103
GeV? and s < 140 GeV?® without any "shifting" of the latter, as was proposed in

[3].

74 T T
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tion cone slope in the
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We now explain briefly the physical mechanism that leads to the depen-
dence (1). As shown in [5], an important role should be played in the asymp-
totic form of the scattering amplitude by the widths of the resonances exchanged
in the t-channel (these widths are usually ignored in the derivation of the
asymptotic formulas [8]). Allowance for the width leads to the existence of
Regge poles on the physical sheet of the complex J plane only at t > 0. When
£t < 0, the poles go off through the fixed cut from - to J = a{(0) to an unphysi-
cal sheet, where they form complex~conjugate palrs with the other poles. At
small t and not very large s, these poles lie close to the real axis and deter-
mine the contribution from the cut, thus imitating the presence of ordinary
moving poles.

Thus, in spite of the fact that the only amplitude singularities at t < O
are branch points, the amplitude behaves in a definite region of s and t almost
exactly as if it had ordinary Regge poles. (In this sense we can call this a
"gquasipole model".) With increasing s and t, the deviation from the pole model
becomes stronger. At t21ln 8 < 1 the amplitude in such a model is given by

_1 _imag ’ i
T*(s,t) = B(f)(i )e 77 %% exp[— 2y\/::-1-(fo-f)(lns «Lz Mo (2)

where v is a parameter connected with the width of the resonances, a' is the
slope of the trajJectory at £ > 0, and to is the lowest thershold in the t-chan-
nel and equals Mu; in this case.

We assume now that at t > 0 there exists a family of resonances lying on
the leading vacuum trajectory with a(0) = 1. Then the model indicated above
can be used to describe diffraction scattering. This means that at t < 0 the
asymptotic form of the amplitude 1s determined not by a pole but by a fixed cut
with a, = (0) = 1. Then S0t v (1n s)-1/2 as 8 » o, If we interpret, as usual,

the experimental data in terms of the Regge trajectorlies, then we can, starting
wlth (2), introduce an "effective" vacuum trajectory

@ pp ZI—C\/(fo—f)/lns, (3)
where ¢ = 2yv/a'7m. We see that 4, pp has a curvature dueff/dt N (fy - t)‘1/2
(see also [9]). From this follows directly expression (1) for the slope varam-
eter b.

We note in conclusion that the quantity c¢ obtained by the fitting is some-
what larger than that obtained from estimates based on typical values of the
meson-resonance widths. It must be recognized, however, that (2) was derived
by making a number of simplifying assumptions. It was assumed, in particular,
that the reduced width vy 1s constant, whereas the threshold behavior in the t-
channel necessitates allowance for a dependence of vy on t [5].

The author considers 1t his pleasant duty to thank A.M. Baldin for a num-
ber of valuable remarks, and also the participants of the seminar by E.S. Frad-
kin for useful discussions and N.I. Starkov for help with the numerical calcu-
lations.
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The amplitude of excited sound in a strong
magnetlic field parallel to the surface exper-
lences oscillations corresponding to geometric
resonance. The oscillation amplitude is propor-
tional to the deformation-potential tensor at a
definite point of the Ferml surface.

The interaction of electrgns with SQund is usually described with the aild
of the deformation tensor Kik(p) = Aik(—p), which characterizes the change of
the dispersion law 8(5) upon deformation. The corresponding volume force in
the equation of motion of the elastic medium is

d
F. = — <Ay f > (1)

dx;

(£6(e - u) is the non-equilibrium part of the distribution function, and the
angle brackets denote integration over the Ferml surface). When the electron
system is perturbed by an external electromagnetic wave, the force (1) is re-
sponsible for the deformation mechanism of sound excitation.

It 1s of interest to look into the singularities of sound excitation under
anomalous skin effect conditions. It is known that under such conditions the
contribution of different electron groups to the penetration of the electromag-
netic fielg into the interior of the sample 1s quite different, so that the
form of €(P) can be reconstructed from the experimental data. We show below
that when sound is excited in the presence of a strong magnetic fleld Ho under
conditions when the radius R of the Larmor orbit exceeds the length of the sound
wave, there should be observed sound-amplitude oscillations of appreciable mag-
nitude, due to the electrons from the extremal Fermi-surface section perpendicu-
lar to Hg, which glide parallel to the sample surface. This makes 1t possible
to determine the value of R(P¥) on the Ferml surface directly from experimental
data on sound generation.

We consider the excitation of sound in a half-space z > 0 in the presence
of a strong magnetic field Ho parallel to the surface (y = (Qt)~! << 1, Q is the
eyclotron frequency, and T is the relaxation time). Let us find the amplitude
of the transverse sound wave excited by the force (1). As usual in the anoma-
lous skin effect, we use in (1) the distribution function f without allowance
for the boundary condltions, we neglect the field EZ, and continue the field

EX y in even fashion to the region z < 0. It i1s easy to show that far from
2
the surface

» I3

A

Te iz

P k
. = , < o d¢p’ v E (k) equ{ydqﬁ'sin—ﬂ-q{ v, d¢ ™ >,
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