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We consider the power-law corrections to the asymptotic-freedom predictions for
vacuum polarization by a photon. The corrections are determined by the square
of the gluon-field stress tensor (gluon condensate) averaged over the vacuum. The
analysis makes it possible to calculate the lepton widths of the p° and ¢° mesons.
The results agree well with experiment.
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We calculate in this article the constants of the leptonic decays of p and ¢ mesons:
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Here e is the base of the natural logarithm, mm,,mgm, are the masses of the
corresponding mesons, fi.f, are the constants of the decays K—uv and
T—puW(fy = 1.25f; f,=0.95m ). The constants g, and g, are defined in standard
fashion in such a way that the width of the electronic decay is equal to
I'(Voee )=(47/3)a*(m,/g*, ). The predictions (1) and (2) agree with experi-
ment within the limits of the experimental errors.

The derivation of relations (1) and (2) is connected with consideration of certain
principal questions of quantum chromodynamics. A central assumption is the nonvan-
ishing of the vacuum mean value
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where G2, is the gluon-field strength tensor.

To explain how the vacuum mean value (3) enters into consideration, we recall
first the standard method of operation in quantum chromodynamics (see, e.g.,l'!).

It follows from asymptotic freedom that, say, the polarization of a hadron vacu-
um in the deep-Euclidean region is reliably calculated in perturbation theory from the
effective quark-gluon coupling constant a_. On the other hand, the dispersion rela-
tions express the same polarization operator in terms of an integral of the e¢'e—ha-
drons annihilation cross section. This gives rise to the sum rules
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where the left-hand side is obtained from perturbation theory and the right-hand side
is expressed in terms of the observed quantities. The index » in relation (4) numbers
the order of the derivative of the polarization operator.

The sum rules for the light quarks (u, d, s)[? are valid if Q2 is large enough. For
the heavy (charmed) quarks we can choose Q?=0. A detailed analysis of the sum
rules that occur in the latter case was carried out inl*%, It turned out that the first four
sum rules (n=1,2,3) agree with experiment within several percent. For n=35 the
discrepancy is approximately 20% and increases rapidly with the number 7.

- The existence of such n for which the sum rules at fixed Q? are valid is obvious
beforehand. Indeed, the physical spectrum contains resonances not accounted for by
perturbation theory; their appearance is due to the interaction at large distances and to
“dragging” of the quarks.

From the theoretical point of view, the reason why the sum rules do not hold at
large » is that operators of nonzero dimensionality contribute to the operator expan-
sion of the two currents

if T{jﬂ(x)jv(())},,iqxdx=§ C,0,, (5)

where C, are numerical coefficients that can be calculated by a series expansion in
a,(Q). The sum rules (4) correspond to the contribution of a single operator having
zero dimensionality. The contribution of operators of higher dimensionality (d) is
suppressed by the factor (u/Q)? (or (u/2m)? for heavy quarks), where u is of the
order of the reciprocal hadron radius. Nonetheless, at fixed Q? the power-law correc-
tions increase rapidly with the number of the derivative and become substantial.

The vacuum matrix elements of the operators in (5), with the exception of the
unit operator, are equal to zero in perturbation theory and their calculation calls for
the use of non-confinement theory (connected with instantons,!*! gauge ambiguity, (6]
or some other theory). We propose that the vacuum expectation value (3) differs from
zero and consider the phenomenological consequences of this assumption.

If the vacuum expectation value of (3) differs from zero, then the following
increment appears in the polarization operator calculated by perturbation theory:
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where a=1+4m’ /Q% (Q*=—¢’); m, is the mass of the deep-virtual quark, while the
polarization operator is so normalized that in lowest order of perturbation theory we

have
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The coefficient of the opeator (G2,)* in (6) is determined by diagrams of the following

type:
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The increment (6) limits the region of applicability of the asymptotic-freedom
formulas at large n. Two cases are of interest in applications: light quarks (the limit
m,—0) and heavy quarks (the mass m, is large and ?=0). For the ratio of the
derivatives of the polarization operator AII and of the operator calculated in zeroth

order of perturbation theory we obtain

? Yan (+n(n+l)f Zs <01 Gy G 0> (7)
( ,1_()2 3w Q* (light quarks)
( i_)" Ite? n( D(n+2)n+3) 40 a, <0|C 210>
doz n + n s II.V I—“j (8)
\ 2n+5 v 7 (4mq)

(heavy quarks)

It is seen that this ratio increases with increasing n. It is natural to expect the foregoing
discrepancy in the sum rules for charmonium at n=35 to be connected with the contri-
bution (6). This assumption fixes the matrix element (3), for which we can then

obtain the estimate:
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It is important that one and the same matrix element (3) determines for both
heavy and light quarks those values of » up to which the asymptotic freedom can be
used. From (7) and (8) it is seen that the correction increases more slowly for light
quarks, i.e., it is possible to calculate a larger number of derivatives at the same
distance from the singularity (Q*=4m?_ ).

Whereas for charmonium the correction is significant at n=>35, for light quarks it
becomes important at n~Q°/m?,. These sum rules are saturated in practice by the
contribution of the p and ¢ mesons. We then obtain from (4) the relation (1).

The ratio g°;/g’, in (2) depends substantially on the mechanism whereby the
SU( 3) symmetry is broken. In quantum chromodynamics, the breaking of SU(3 ) is
connected with the difference between the bare masses of the quarks. Consider the
difference betwen the polarization operators induced by the currents j(#’ =5y s and

j =1/ V2 Yy ,u —dy »d ). In first order in the SU( 3 ) breaking, this difference
is determined by the operator m ,qq (g is the field of the quarks u, d, or s ) whose
vacuum mean value is connected with the spontaneous breaking of chiral symmetry.
This can be phenomenologically expressed in terms of the mass and decay constant of
the pseudoscalar meson, by using the PCAC hypothesis:

(ms +mu)<01Eu+§s|0>=-flgm;<
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By considering a derivative with number n~@?/m’, and taking (10) into account, we
obtain (2).

We note that the sum rules that take into account the spontaneous breaking of
chiral symmetry at small n were discussed inl’l. What is new is the statement that it is
permissible to consider a derivative of higher order and to predict the width of the
leptonic decay of ¢.

Another possible application is the calculation of the leptonic width of a vector
particle made up of heavier quarks. It is possible that such a meson is Y with approxi-
mate mass 10 GeV.[8! According to (8), in this case asymptotic freedom is valid up to
n=30. It is interesting that at such values of » the one-resonance contribution again
predomainates in the integral of the physical cross section for the production of new
particles, and we obtain:

(Y »ete” ) =05 keV, (11)

where we have assumed that the quark has a charge —1/3. (Sum rules for small »
were considered in1).

Thus, from the numerical point of view, the statement reduces to meaning that in
all the cases considered the sum rules (4) should be valid up to values of n such that
saturation by one resonance takes place. The number of derivatives depends in a
nontrivial manner on the mass of the quark and is determined from quantum chromo-
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dynamics, if the matrix element (0/G%,G4,J0> is fixed in a definite manner (e.g., from
the sum rules for charmonium).

If the foregoing point of view is correct, then this could be of importance for
confinement theory. In particular, operator expansion turns out to be valid not only in
the higher-order terms, but, at the very least, in the first power-law correction. Further
applications will be considered in succeeding papers.
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