favorable because of the quantization of the electron motion in the transverse
direction. If A%/m¥d? > V, - A, then all the quasiparticles produced under the
influence of the electrostatic image forces populate only the lower level of the
transverse motion. We then return to the already dlscussed case of a two-dimen-
sional semiconductor.

The realignment of the ground state of a semiconductor under the influence
of electrostatic image forces can take place also for extrinsic semiconductors
(with impurity concentration N << 1/d°% and with a ground-state radius pg << d).
The electrostatic-image forces decrease the impurity. lonization energy and ac-
cordingly increase the radius of the impurity states). If the impurlty-band
broadening due to the overlap of the impurity orbitals were to become comparable
with the decreased ionization energy, a semlconductor -~ metal transition would
take place.

We note that in the case of extrinsic semiconductors with a large width of
the forbidden band (and hence with small €) and with a donor or acceptor depth
A~ 1072 eV, the electrostatic image forces become appreciable even for layers
several hundred Angstrom thick. This circumstance would facilitate the observa-
tion of the realignment in question.

[1] G. Deutscher, S.P. Farges, F. Meunier, and P. Nedellec, Phys. Lett. 354,
265 (1971).
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This paper deals with a speclal resonant-field
conflguration in which the atom 1s acted upon by
a spatially constant fleld. The excited atom can
be accelerated in this case to an energy of 1 keV,
This effect can be used for spatial separation of
excited and non-excited atoms in an atomic beamn.

In a strong resonant field, the atom is acted upon by an appreciable force,
on the order of 102 - 10% eV/cm. This estimate follows from the general formula
for the force F acting on the dipole moment of the atom p in an inhomogeneous
field E

F =pVE-hc.c. (1)

If we put p v 1 Debye, k v 107° em™! for the wave number, and E ~» 3 x 10° -

3 x 10% V/em. Formula (1) has been written out in the resonance approximation,
and the frequencies of the field and of the dipole moment are reckoned from the
frequency of the working transition.

In a quasistationary field, the induced dipole moment follows the field
adiabatically, and the force (1) takes the form

Fov<hs (2)

5)Similar effects canprobably take place also for adsorbed atoms.
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where A = aﬁ + h.c. 1s the Hamiltonian of the electron interaction with the
resonant field, and <d> = p.

Under ordinary conditions this force does not come into play, since it os-
cillates over the wavelength. If, however, the field is taken in the form of a
uniformly-accelerated sinusoid, then the captured atoms will have an accelera-
fion proportional to the rate of change w of the field frequency [1]1. At suf-
ficiently large é, the acceleration effect 1s such as if the force F were to

be constant in space. Thus, for example, a hydrogen atom can be accelerated to
1 keV within 1077 sec.

The force (1) acts only on excited resonant atoms. It can therefore be
used for spatial separation of excited atoms from atoms in the ground state,
Just as in an ammonia maser. One can thus obtain inverted population with re-

spect to the ground state and generation in the violet or ultraviolet region of
the spectrum.

To effect such a separation, it suffices to impart to the exeited atom in
the beam a transverse momentum of the order of the thermal momentum. From this
point of view it would be useful to study other acceleration mechanisms not con-
nected with pulsed acceleration of the captured atoms.

Ashkin [2] proposed to use the pressure of light for resonant acceleration
of atoms. In this case, the atom acquires during the lifetime the momentum of
the resonant photon. The ponderomotlive force (1) exceeds the light-pressure
force by a factor dEt/h, where T 1s the lifetime of the atom. This parameter
can be very large in a strong field.

It is of interest to consider the possibility of accelerating the atoms
with a stationary field. It is clear that this 1s possible only if the force is
not in the form [2], 1.e., the adiabatic approximation is violated. We con-
sider below a simple example of such a fileld configuration, in which the effec-
tive force has a definite sign over a distance much larger than the wavelength,
and we estimate the possible acceleration effect.

In a field of the form
iyt
E =E(x) +Ef(x,yle '; E <<E, (3)
Eo(x) = Eo cos kx

the work is performed mainly by the strong resonant fleld
F =2, VE,(x) (%)

where po is the value of the dipole moment at the initial instant of time. Using

wz)

/ Flzrf
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Fig. 1 Fig. 2
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the analogy with the magnetic moment, it can be said that pe 1s a conserved com-
ponent directed along the effective magnetic field, the role of which is played
by the quantity Eo(x). The damping pe due to the spontaneous emission can be
neglected if the damping time is sufficiently long, on the order of 10”7 sec.

The atomic-precession frequency w(x) = 2dEq(x), where d is the matrix ele-
ment of the dipole moment of the transition, varies with the coordinate and its
value 1s of the order of 10!? - 10'%® Hz. The Doppler frequency is kv, ~ 10° Hz
(vo is the initial velocity of the atom).

The time required to negotiate a distance equal to half the wavelength,
over which the force (U4) has a constant sign, is thus larger by 3 - U orders of
magnitude than the precession period. It is therefore possible to reverse the
sign of a conserved component of the dipole moment pe approximately at the place
where the sign of VEq(x) is reversed. This can be realized with the aid of a
weak resonant field Ei1(x, y), which we choose 1in the form

E‘{x, y) = E, el Aky cog (kx + 7/4) (5)

o = wix,), kx, = - n/4 (6)

The resonance condition can be readily understood with the aid of Fig. 1,
in which the solid line shows the local precession frequency w(x) and the
dashed line shows |E;(x, y)|.

At the point x = x2 the atom goes through the resonance (6). If the condi-
tion

dE, >> kv dE, (7)

is satisfied at the same time, then we deal with a slow passage through reso-
nance. Then poe reverses sign on passing through the point x» regardless of the
phase of the field and of the oscillator [2 - 4].

At x = X3, the precession frequency w(xs) and the signal frequency are also
equal, but the amplitude E; vanishes. We then deal with rapld passage through
resonance and Po remains unchanged. The next reversal of the sign of po oOccurs
only at X = Xu.

The force is shown schematically in Fig. 2. At the points x2 and xx the
force experiences a discontinuity, but actually the width of the transition re-
gion is of the order of 27mE;:/kEg. Thus, after traversing a wavelength the atom
energy changes by an amount

U =8p,E, cos n/4 (8)

We now estimate the number N of the traversed wavelengths, at which the assump-
tions made above are violated. The limitation on N is caused by the presence
of small changes of po, which depend on the phase of the fleld and of the atom,
on passing through resonance. In the case of rapid passage through resonance
these corrections are of the order of Ei1/Eo. Taking into account the random
character of these corrections, we can estimate the number of steps in which py
changes by an amount on the order of unity at N = (E¢/E;)?.

In the case of slow passage through resonance, the corrections thag depend
on the random phases are of the order of exp(—/vmax/v), where Voax - dE{/kEg .

In view of the strong dependence on the velocity, we can assume approximately
that the random corrections to pe become signiflcant at v = vmax' On the other

hand, in the case of appreciable acceleration we have v = V2NU/M, where M is
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the mass of the atom. This ylelds the optimal value of the signal

1/16
(fik)?
El = Eo [_ZMdEo (9)
at which the atom traverses the maximum number of wavelengths as it accelerates
2MdE ]1/3
Nmax =[(ﬁk)"z°] : (10)

We see thus that the acceleration is more effective for heavy partlicles with
the aid of a long-wave fleld. The final energy NU of the atom does not depend

on the initlal veloelty. It 1s convenlent, however, to express (10) also in the
form

dE 2/3
N o of—2) p-1/3
max («hkvo) n ’ (ll)

where n = 2U/Mv§.

In a strong field U v 10-2 eV, so thatIﬂ/a z 1 at energies corresponding
to room temperatures. dE,/Bkve v 10%, so that N oow = 2U/Mvy .

In place of a field E; that changes the dipole phase by 7, we can use a
series of T pulses tuned to the maximum precession frequency w(x). In this case
those atoms which pass through an antinode of the strong field also change the
phase of the dipole by 7 in the presence of a short-duration m-pulse, and their
energy changes by dE after traversing one wavelength. The acceleration has then
a stochastic character. Even if we assume that the atom can change 1ts energy
by dE only once, this may be sufficient to permit the excited atom to leave the
atomic beam.

Finally, when the atom crosses a narrow light beam whose intensity is time-
modulated, its energy can also change by an amount on the order of dE. To this
end it suffices to have the period of the modulation of the order of the time
of flight.

In conclusion, the author thanks V.M. Fain for a useful discussion.
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