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As 1is well known, processes in nondissipative media with small nonlinear-
ity and dispersion are described by the Korteweg-deVries equation
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So far, however, (1) was used to investigate mainly the evolution of a perturba-
tion that is concentrated at the initial instant in a finite region of space

[1 - 3]. The purpose of the present paper is to solve a problem in which n ex-
periences at the point x = 0 a finite jump, so that n = ny at x < 0 and n =0

at x > 0. In the course of time this dlsco?tlnuity changes into a broadening
reglon occupled by the oscilllations. At nj 2¢ >>1, the dimension of this re-
gion is much larger than the oscillation wavelength, so that Witham's quasi-
classical method can be used [4]. Equation (1) has a periodlc solution
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where dn(u, s) 1s a Jacobi elliptic function with modulus s, 0 < s < 1. The
value n averaged over the period and the wave vector k are gilven by
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where K and E are complete elliptic integrals of the first and second kind, re-
spectively.

We seek a solution in the form (2), assuming a, s, and Y to be slowly-vary-
ing functions of x and t. It is convenient to write the approximate equations
for these functions, according to [4], by introducing three new quantities
rs > ra > rp:
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The equations for r, are
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where v are definite functions of rys we need only an expression for va:
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Equations (4) do not contain a parameter with dimension of length, so that their
solution, for our initial condition, should depend only on the ratio r = x/t.
Then (%) reduces to

(vgy -1 ) 2= 0.

dr

We obtain the required solution by putting
r, = const, r, = const, v, = 7. (%)

The oscillations occupy a finite region in space, and on the leading front of
this region, at T = T+, we should have rz = rs and s = 1, i.e., k = 0. In other
words, near the leading front the oscillations break up into a set of solitons.
By virtue of the continuity at T = T4, we should have n = 0, from which we find
with the aid of (3) that r; = 0. On the trailing edge, at v = t_, the oscilla-
tion amplitude vanishes, i1.e., rz = rp and s = 0, At this point n = nos, whence
rs = 2ng and a = nes?. This means, in particular, that the amplitude of the
leading soliton is equal to 2n,. Taking the foregoing into account, we have
ultimately
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Formulas (6) and (7) in parametric form (the parameter 1s s) solve our problem,
i.e., they determine n(x, t) at ng/z >> 1. It follows from (7) that T- = -No

and T+ = 2no/3. As T < T_ we have n = no and at T > T4 we have n = 0, At

T > 14 the mean value n behaves like In~'[1/(T4-7)],
so that n tends to zero with infinite derivative

on the leading front. The dependences of n, k,

and s2 on T for a unit discontinuity (no = 1) is
shown in Fig. 1 and the dependence of n on x at

t = 50 and 100 is shown in Fig. 2. We see that

the broadening of the oscillatlon region with
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Fig. 2
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increasing t is due to the increase in the number of oscillations, and the wave-
length changes insignificantly.

The evolution of the discontinuity on the basis of the linearized equation
(1) was considered in [5]. , The formulas obtalned there describe the initial
stage of the process at ng/zt << 1. The process should subsequently reach the
asymptotic solution obtained above, in which the dispersion and nonlinearity ef-
fects are of the same order of magnitude. The decay of a small discontinulty
in a plasma was experimentally investigated in [6]. The observed plecture was
qualitatively similar to that in Fig. 2.

The authors thank V.E. Zakharov for a useful discussion.
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We consider the reflection of powerful laser
radiation from a plasma produced when laser pulses
are focused on a solid target. We show that to
calculate the reflection coefficient correctly it
is necessary to take the nonlinear effects into ac-
count. In particular, saturation effects 1limit the
reflection as a result of stimulated Thomson scat-
tering and stimulating scattering by ions at the
2 x 10! - 10'® W/cem? level.

Recent papers [1, 2] discuss various stimulated-processes in a dense plas-
ma produced by focusing powerful laser radliation on a solid target. Interest
in these processes is connected with the problem of initiating thermonuclear
reactions by heating a plasma with a laser [3]. It is feared in [1, 2] that at
large fluxes the processes of stimulated scattering in perlipheral plasma layers,
with electron density N, << N__ = 102! cm~3?, where absorption at electron tem-

peratures kTe > 1 keV is very small, can lead to a conversicn of an appreclable

fraction of the incident radiation into scattered waves that leave the plasma,
i.e., to reflection of the optical energy.

We wish to call attention in the present communication to a number of im-
portant aspects not accounted for in [1, 2]. The most important of them are
saturation processes that limit the exponential growth of the scattered waves.
The fact that these processes must be taken into account can be seen from the
following simple considerations. Let us assume that a plasma of density N is

grouped in a lattice N(x) = N[1 +acos(4mx/X)], where : = 2ﬂc/wL is the wave-
length and wL the frequency of the laser radiation, and o is the depth of modu-

lation. The dielectric constant of the plasma at the frequency wr, is
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