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The author has shown in an earlier paper [1] (see also [2, 3]) that the
presence of low oscillations of the potential in a plasma can lead to a notice-
able increase of the transport coefficients across a strong magnetic field. This
is connected with the "mixing" [4] that results from the deviation of the drift
trajectories of the particles from magnetic surfaces (or from constant-pressure
surfaces) .

The cited papers, however, considered only a two-dimensional, K case, when the
perturbation potential does not depend on one of the coordinates?’. In the
present article we get rid of this limitation and analyze the influence exerted
on the transport across a strong magnetic fleld by low-frequency three-dimen-
sional potential oscillations (e.g., drift waves). We confine ourselves here
to a qualitative theory, which explains easily the physical picture of the phe-
nomena in question, on one hand, and glves sufficlently satisfactory quantita-
tive description of the process, on the other.

We consider a plasma cylinder situated in a longitudinal (BZ) and azimuthal
(B¢ = GBZ) magnetic fields, in which there propagates a potential wave of the

form
(1) J. @D (r, g - vot)expi[k‘Lq + k“{,' -w’t), (1)

where T = z + 6r¢ is the coordinate along the force line, n = r¢ - 6z is the
transverse coordinate, w' = w + k;vo, vy = —c(Er/B) is the velocity of the azi-

muthal rotation of the plasma in a constant (ambipolar) radial electric field
Ey, and w 1s the frequ?ncy of the oscillations in a coordinate system in which
the plasma is at rest?’/, We assume that the magnetic field 1s strong enough so

I)Thus, in [1, 2] the potentlal was independent of the longitudinal coor- -

dinate of the torus, and in [3] it was constant along the line kyy + kZz =
econst.,

2)To abbreviate the notation, we assume here that 6 << 1.
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that the particle motion can be described by the drift equations. Then, since
the particles (electrons or ions), move along the force line with velocity

{ = u and drift transversely to i1t with velocity f = vo in the absence of os-
cillations of the potential, it is easily seen that the particles moving with
velocities in the interval

- a)
—_ - A% <y < — ¢ Aui
n W
where

T

Ze.® Y72
L)
) ’ it i

Au. = v(———L-
! ! T.
1
and ej, m, , and Tj are the charge, mass, and temperature), are trapped by the

wave and drift under the influence of the wave field transversely to the force
line with velocity Ve ¥ (3®O/Bn)(c/B) over the surface ®o(r, n) = const®’/, In

other words, the particles trapped by the wave are deflected from the magnetic
surface by an amount a = (91n®./9n)~!. Thus, if the effective collision fre-

quency v§ = vj(vj/Auj) is smaller than the characteristic frequency v

T i/2
vi:(—l) .and €., m
m; !

0= VE/a

of the particle motion in the wave field, then as a result of each collision,
which transforms the particle from a trapped one into an untra%ped one, the
particle will be displaced on the average by an amount Vj = g%}, In the oppo-
site case of large collision frequencies, v; >> vy, the particle moves during
the time between collisions a distance smaller by a factor v?/vo, and conse-
quently the effective displacement 1s Aj = a(vo/v§). Combining these two for-
mulas and recognizing that the relative number of trapped particles 1s ANJ/N =
(Auj/uj)eXp(—w2/2kivj2)’ we obtain for the diffusion (thermal conductivity) co-

efficient connected with the trapped particles the following expression

D . AN. Vi Vi aZexp(_'wz/ 2 2)
tr = u’ AZI i = A 2 I("_ll . (2)
. N u,

1 1 _Vi*Z/VOZ

At a sufficiently high collision frequency, it becomes necessary to take
into account also the contribution made by the untrapped particles, whose velo-
elty is close to the phase velocity of the wave and which are consequently

strongly displaced in the field of this wave. At k"AujAug/vg < vy o< k"vj, the

rms displacement of the untrapped particles during the time between two

3)It should be noted that the particle is trapped by the wave if the rela-
tive change AB/B of the magnetic field along the force line over the wavelength
does not exceed the depth e@O/Tj of the potential well. For toroidal particles

of the Tokamak type, at k), = 0/r and AB/B = r/R thls condition takes the form
r/R < e@o/T..
J
“)he factor v§/Au§ in the effective collision frequency is the result of
the differential character of the integral of the Coulomb collisions (stj Y
v,v2 (azfj/auz)) and should be left out if vy is taken to mean the frequency of

JdJ
collisions with neutral particles.
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successive collision will obviously be of the order of AE =~ vé/[(w - k”uj)2 +
v§], and consequently the contribution made to the diffusion (thermal conduc-
tivity) coefficient by tiie untrapped particles 155)

, _w?
VE CXP - 2,('2( V’.Z -

utr,N 2 * (3)
k“vl. [l . ks Au%? U?]l/z

I

Summing (2) and (3), we obtain finally an expression for the diffusion and ther-

mal conductivity coefficients; thié'exggession is valid in the reglon of suf-
5 .

ficiently small collision frequencies j-< k”vj
- Y
e. @ 2 2
) a? 2 e'q)o -
N R S A A
L= .= . + i B} .
i T e ®, 4 XTI exP( 2k2v?)’ (4)
1+ (v.r.)z( ) 1+(———- ( LM} : noi
L T. T, v,
i i j
where T, = al/p.v, .= v./w.,, and w, = e.B/m.c.
3 /P3Vys P I 3 jB/mye

We note that expression (4) 1is valid only 1f the particle can drift between
two successive reflections over a distance much shorter than a, i1.e., at vy <<

knaAuj

always satisfied, whereas for ions it may be violated at sufficlently small k”.
In this case the particles trapped by the wave play practically no role, and
the diffusion (thermal conductivity) coefficient is determined entirely by the

or at |e¢O/Tj| << k“vjrj). For electrons this condition is practically

) . . s
5)ye have taken into account here the fact that at low collision frequen-
cies, v? = vjvé/Aug << k"Auj, the displacement is of the order of Aj o
/k"Auj.
§)We note that the ambipolar diffusion coefficient can be smaller than

that given by formula (4), since it is determined by the smaller of the elec-
tron or lon diffusion coefficients. ’

VE
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untrapped particles and can be easily estimated. It turns out to equa17>

2
e; P2 a? exP(- “’/2kﬁ W%)
oo Y
T

: r2k, v e d hoe
i it i i o ~2 -4
1 +(—‘lf—j‘( Vi rl.) ( T’. k" vl) 4}

(5)

It follows from (4) and (5) that the presence of oscillations of the type
(1) in the plasma can lead to an appreciable increase of both the diffusion and
the thermal conductivity 1n comparison with their values given by the neoclassi-
cal theory (see the figure).

We note in conclusion that in the case of drift waves, since their longil-
tudinal phase velocity w/ky is usually much higher than the thermal velocity of
the ions (but is lower than the thermal veloclty of the electrons), the presence
of such oscillations in a plasma may also not lead to a noticeable increase of
the transport coefficients for the ions (owing to the presence of the small
factor exp(—w2/2kﬁv§)).
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The purpose of this communication is to point out that in a spatially in-
homogeneous plasma there can be no absolute stability of the decay type wlth an
excitation threshold lower than given by the recent results [1 - 4]. Such an
instability arises if both parametrically-coupled waves have turning points in-
side the plasma layer, as shown 1in the figure. The resonant interaction is re-
alized in the region of intersection of the curve (the pump field is assumed to
be homogeneous); it leads not only to an amplification of the incident wave,
but also to the appearance of a wave of another type [2, 4]. It is easy to
verify that if the energy propagates as indicated in the figure, then such a
nonlinear transformation produces positive feedback and can lead to a growth of
the wave amplitudes with time. If the energy of one of the waves is transported
in the opposite direction, then there is no feedback, and we have only ampli-
fication, as before. The situation described here is usual in an inhomogeneous
plasma and can be realized for a large number of different decay processes. In
the absence of damping, the instability sets in if the product of the coef-
ficients of the transformations 1 - 2 and 2 - 1 exceeds unity. According to

7)In the derivation of formulas (4) - (5) we have assumed that k;a << 1,
and formula (5) is valid only at (kja)~* > (VE/k“aAuj) >1. Ifka > 1, then

there is no region where (5) is valid, and the diffusion (thermal conductivity)
coefficient is determined by formula (4), where a in the second term should be
replaced by k7'.
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