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The amplitude of the oscillations of the poten-
tial of a quasineutral ion beam is calculated ap-
proximately as a function of the de and ac compo-
nents of the lon-current density, the residual gas
pressure, and the accelerating voltage. It is
shown that at a limited potential amplitude the
total ion-beam current does not depend on its height.

The dynamic decompensation of the space charge of quasineutral ion beams
was described in a number of earlier papers [l - 4]. These papers do not con-
tain, however, an analysis of the relation between the beam potential oscilla-
tion amplitude and the depth of modulation of the lon-current density. The
present article is devoted to this question.

Let the density J of the ion current in a quasineutral ion beam have an ac
component Aj sin wt. The time of compensation of the additional charge 2Aj/v =
£j/v 1s equal to Tg = £1, where T is the total compensation time, At a modula-

tion frequency w > 2m/1&, the neutrallization process is retarded. Therefore
the beam introduces into the plasma periodically an excess positive charge, and
the plasma potential varies synchronously from the stationary value ¢, v
TeanM27m (Te is the electron temperature, M2 and m are the lon and electron

masses) to a certain maximum ¢ which is to be calculated.
When the excess positive charge appears, the resultant electric field com-

presses the electron gas, leaving the plasma quasineutral, and the excess charge
is instantaneously "spilled over" into the layers next to the wall.

If the beam moves transversely to a strong magnetic field ﬁ, then the elec-
tron gas compresses in practice only in the direction of H.

Under this assumption, the plasma potential is given by the following ap-
proximate algebraic equation:

ApA=2(d-d)j,/v,, (1)

where A is the height of the lon beam, j2/v: is the space charge of the second-
ary ions outside ,the beam near the walls of the vacuum chamber (en, = -j,/Va),
a(e) = [(2e/M3)1/2¢3/z/91rj2]1/2 is the thickness of the layer of positive
charge near the wall, Jz = jno(ci + oce)A/2 is the density of the secondary-

ion current to the wall, oi and Gce are the ionization and charge-exchange cross

sections, and no is the concentration of the residual-gas atoms in the vacuum
chamber. .

Since the velocity of the fast ion increases with increasing plasma poten-
tial, we have

Dp =&+ /20 -, /20) /v, (2)

where u is the potential of the ion source relative to the walls of the vacuum
chamber,

It is convenient to represent (1) in dimensionless form:

a(2f+q9-1,) =q34 g3y (3)
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where n = ¢/u, no = ¢o/u (ne < n << 1),
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M is the mass of the beam ions, and

A:[nowi-+%glfl. (6)

The left-hand side of Eq. (3) represents the

perturbation of the positive space charge,

and the right-hand side represents the negative charge forced out of the plas-
ma region (d - d;) near the wall.

The plasma potential n'is then determined by the point of intersection of
the functions f:(n) and f2(n) representing the left- and right-hand sides of Eq.
(3), respectively.

At definite critical values of the parameters, o o, and & = & the

C’
Ng- This case is shown

equality f1 = £, occurs at the tangency point K, at n
schematically in the figure.

It is easy to show that

ag = 3/417(1:/4 ey, (7)
_ 1/4.
660/770 =3+ n./n, —4(77(:,/1]0) 4 (8)
The critical regime (uc, éc, nc) is unstable, since an infinitesimal per-
turbation of a, &, or n produces in the beam a "virtual ancde." This insta-

bility is analogous to the Pierce electrostatic instability in a quasineutral

. i o = Q = 1 =
electron beam The maximum value c max CCCUrs at N, Ny while Ec 0

and determines the criterion for the Intrinsic electrostatic instability, i.e.,
in the absence of external perturbations

@ qnax = 3//471(1,/4.. (9)
or
iz, =%/, . (10)

A result similar to (10) was obtained earlier by Popov [5]. In most
practical problems the beam potential is limited so that n < n, < 2On0. At the

same time, the depth of modulatlon of real ion beams 1s gquite high, so that
Ec << & < 102n0. Real values of the parameter o are therefore low, o << o,

Taking the foregoing into account, we can approximate f,(n) with satis-
factory accuracy by the expression

fz(n) = 7’9—[/4(”_ 1]0) vee, (ll)

where ng is the maximum permissible value of the potential'(ﬁ?Ono). In this
approximation we obtain in place of (3)
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@ = 77'9'”4(1)/110 -V (2¢&/m, + /9, - -l | (12)

In the case when n/ne >> 1 and E/ng >> 1 we have

a=17'gl/4n(2f) L (13)
or, using (4) and (10), we obtain
i/iy=4Vn, /ngn®(38) -2 (14)

Equation (14) ylelds the sought approximate dependence of the beam potential n
on the modulation depth £ and on the ion current density J(£, n).

For example, for n = n_ = 10ne, no = 3 x 10™%, £ = 6 x 107%, u = 3 x 10* V,
T, =27V, A=20cm, A =10 cm, M2 = 28, and M = 56 we obtain jo = 10 A/cm?

j = 3.5 mA/cmz, and the total ion current per centimeter of width is I = JA =
70 mA/cm. These Tigures are in satisfactory agreement with the characterlstics
of ion beams in electromagnetic isotope separators [2 - 4].

It is useful to note that under the natural limitation n < n_ = const we
obtain from (14) the condition g

fAME2 = const (15)

Consequently, at a gilven potential ng, the total current does not depend

on the height of the beam, and the permissible current density increases with
decreasing height. This may be the reason why it was impossible to increase

the productivity of electromagnetic separation installation by increasing the
beam height.

In conclusion, I am grateful to Yu.S. Popov and V.S. Erofeev for useful
discussions.
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The critical charge ZC was calculated for a "bare" nucleus, il.e., without

allowance for the screening of the Coulomb field V(r) = -Za/r by the electron
shell. The screening weakens the attraction of the electron to the nucleus:

Za.
Vir) = = 22500, 0< x(r) <1, (1)

r
and Zc increases correspondingly. Here x(0) = 1 and (for a neutral atom) -
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