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It is well known that the anomalous singularity of triangular diagrams is
logarithmic [1 - 3]. If the singularities of the diagram vertices with respect
to the virtual masses lie close to the physical region, the character of the
anomalous singularity of the entire diagram may change. We shall discuss the
case when the singularities of one of the triangular-diagram vertlices lie closer
to the physical region than the singularities of the two other vertices.

Consider the diagram of Fig. 1. The singularity of the diagram is con-
nected with the region where all three intermediate particles are real. This
singularity 1s close to the physical region if the initial particle 1' forms a
weakly bound system of particles 1 and 2. In the particular case when there is
no interaction whatever between particles 1 and 2, the block "A" vanishes, par-
ticles 1 and 2 are real, and the diagram describes the amplitude of the transi-
tion of two particles into three. The "anomalous" singularity of such a dia-
gram is a pole connected with the fact that the particle 3 is real. This pole
lies iIn the physical region, corresponding to arbitrarily large distances be~-
tween the processes of blocks "B"™ and "C."

If the binding energy e of particle I' relative to decay into particles 1
and 2 1s much smaller than the masses m: and mz2 of these particles, then the
two poles of propagators 1 and 2 are close to each other and are on opposite
sldes of the contour of integration with re-
spect to fy. Closing thils contour around one of
these poles, say 2, we obtain the main con-
tribution of the diagram, accurate to terms of
order e€/m [2]. This procedure is valid also
when € < m; << mz. Putting for simplicity
me >> m;, ms,'), introducing the coupling
momentum n = v2mi€, and taking into account
the known relation between the form factor of
the vertex "A" and the wave function of the
particle 1

p ()= , (1)

Fig. 1

1)The results remain the same also without this condition.
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we obtain the following expression for the amplitude of Fig. 1 in the rest sys-
tem of particle 1':

$(0)PF
(f +R)2=p2ic(27)% (2)

F:FBFCM(K;P)’ M(K,P) :f

-t

K =kl_k2= p3+ q, p2=(w1-w2+m1)2—m§, a).=k,~'- (3)

where FB and FC are the amplitudes of blocks "B" and "C" for the real particles
1, 2, and 3. The momentum p in (3) coincides with the momentum ps of particle
3 when ma2+ >> mar,

We put p - kK = x << K + p = 2k. The approach %o the anomalous singularity
is due to the decrease of x. We see from (2) that the character of the behavior
of M when the singularity is approached is connected with the rate of converg-
ence of the integral

d>f
(2m)3

o (f) = ¥ (0). (4)

The wave function ¢(%) depends, generally speaking, on the radius a = n~! of the

system and on the interaction radius AKI'E A~!. The significant values of T,
which determine the region of convergence of the integral (4), will therefore

be T v A, 7.

If x >> A, n, the denominator in (2) can be taken outside the integral
sign, and we obtain M = -y(0)/2kx, i.e., a power-law growth with increasing x.
If A >> x >> n, the wave function in (2) can be replaced by the limiting yalue
at zero interaction radius (A = «), which is given by formula (1) with FA(f) =

const. The integral (2) converges at 2x >> T >> x, and we obtain M =
(1/2x)In(2k/x).

Expression (2) is valid if x and the values of T that play an important
role in the integral (2) are much smaller than the values of the parameters AB
and AC at which the dependence of the blocks B and C on the virtual masses be-

gins to come into play, i.e., Ag, Ay >> x, A, nz),

All the foregoing can be illustrated with Hulthen's model:

4n(0) (n+ 7) /
¢(f)= i i ’ #=7’+A: '|/1(0)= .'Ll_n—(#_f_r’lr (5)

(% p?)f2 + 2?) 2

Mk, p) = — — - In

¥(0) (l K+ p+ing K+ p+iu )
n 0
2k A -k +p+in g

(6)

-K+p+ i

As A > 0, Eq. (5) coincides with the wave function of the ground state of the
hydrogen atom [4, 5], and

—y ) ) v
2/In nuclear reactions at medium energies we have XA vom, whereas XB’ AC

N mp. At high -energies w: >> m and at large momentum transfers k v q ~ w1 the

values of AB and XC in electrodynamic processes are of the order of w;; this

remains apparently 1in force also for strong interactions.
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M(x, p) =

3
s X TP -k, ¢W)=J2;' (7)

For the states of a hydrogen atom with nonzero orbital angu-~
lar momentum % the expression for M takes the form of multi-
ple poles [4, 6]. As A = », Eq. (5) is the wave function

of a deuteron of zero radius of action, and

Fig. 2

i /T k+p 4y i = 2k
M(k, p) = — /Lln— " " = e/ 1 .
2 ¥ n -K 4+ p+in 2K\/rrnx+in (8)

We note that the values of M in both (7) and (8) are of the same order when

|« -= p| = x v n, while the decrease of (7) with increasing x 1s much sharper
than that of (8). As n + 0, the wave function of the hydrogen atom (A = 0) goes
over into ¢(0)(2m)%8%(F), the block "A" vanishes, and we obtain the pole (7) in
the physical reglon, whereas at A # 0 and n + 0, the interaction in the block

"A" does not vanish, and a logarithmic singularity remains in the physical re-
gion (6), (8).

At large momentum transfers q >> n to the particle 2 the diagram of Fig. 1
far from its singularity is in general of the same order as the other diagrams
of the process, particularly the pole diagram of the pole approximation of Fig.
2 [7]3), which exists when particles 2 and 3 coincide with 2' and 3' in Fig. 1.
At large q, the diagram of Fig. 1 is therefore maximal near the singularity, as
is the case, for example in atomlc processes [4 - 6], and determines the cross
section of the process, which takes the form [6]

d
dG’ = 12KM.(K1 P) I,Zé;eda"sdo‘c, (9)

where ch(ml, k) and doC(K, q) are the cross sections of the processes described

by blocks "B" and "C" with real particles 1, 2, 3. At A ~ n, the width of the
singularity is dp ~ n, and therefore the value of (9) at - x v n is of the order
of og(o,/a?), where a = n~'! is the radius of the bound system 1'.

If the nonresonant background is large, it 1s necessary to add a constant
term to the amplitude (2) and an interference term and a nonresonant term to
formula (9). The singularity of the diagram can be observed at sufficlently
high energies w: and momentum transfers k v q ~ w;, at which there exists a
region wi 2 AB v XC >> x >> A, n. To observe the singularity it is necessary

to measure the cross section as a function of k, p, and q.
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3)The diagram of Fig. 2 1s determined by an amplitude equal to ¢(q)FB and

in principal at g v n, by virtue of the pole behavior of the wave function (1),
(5). At A = 0 (hydrogen), this pole 1s_a multiple one. When } £ 0 Ehis dia-
gram decreases with increasing q like g 2 at A > g >> n and like q~" at

a >> i, n.
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The ideas of percolation theory have found extensive use recently in the
theory of disordered systems, particularly for the description of the electric
conductivity of doped crystalline [1, 2] and amorphous semiconductors [3 - 6].
This posed naturally the mathematical problem of percolation in a continuum,
the idea of which is related to the previously investigated lattice problems of
"nodes" and "bonds," but does not reduce to the latter. This new problem is
formulated as follows. Assume that in all space there is specified an arbi-
trary random function V(r) with a finite correlation radius (potential energy).
Without loss of generality, we assume that the mean value <V> 1s equal to zero.
It is required to determine the so-called percolation level ep, i.e., the mini-

mum value of the energy € at which classically admissible regions, where € >
V(r), form paths that go off to macroscopic distances.

It is shown in [1, 2] that in a large number of cases the quantity ep
determines the activation energy of the conductivity, which can be measured in
experiment with sufficient accuracy.

A method of solving continual percolation problems with a computer was
first proposed by us in [8]. The same method was verlfied there with the aid
of a two-dimensional problem for which an exact solution is known. We report
here for the first time results concerning the three-dimensional problem.

Our purpose was to explain the extent to which the result depends on var-
ious properties of the potential. We were interested mainly in a Gaussian po-
tential V defined by the relation

Vit) = [K(r =) f(r?)d3 ", (1)

where f is a random Gaussian function with a correlator
<F(r)f(r)>=8(r -r1"), (2)
and the kernel K(;) decreases sufficiently rapidly with r beyond the limits of

the correlation radius ry. The distribution function of the potential 1s

F(v) =

2
exp (— .\iz),whereyZ:ZIKz(r)dar. (3)

—
Vry y

We shall refer henceforth not to the percolation energy ep, but to the dimen-

sionless quantity Vo the fraction of space in which V < ep
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