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The ideas of percolation theory have found extensive use recently in the
theory of disordered systems, particularly for the description of the electric
conductivity of doped crystalline [1, 2] and amorphous semiconductors [3 - 6].
This posed naturally the mathematical problem of percolation in a continuum,
the idea of which is related to the previously investigated lattice problems of
"nodes" and "bonds," but does not reduce to the latter. This new problem is
formulated as follows. Assume that in all space there is specified an arbi-
trary random function V(r) with a finite correlation radius (potential energy).
Without loss of generality, we assume that the mean value <V> 1s equal to zero.
It is required to determine the so-called percolation level ep, i.e., the mini-

mum value of the energy € at which classically admissible regions, where € >
V(r), form paths that go off to macroscopic distances.

It is shown in [1, 2] that in a large number of cases the quantity ep
determines the activation energy of the conductivity, which can be measured in
experiment with sufficient accuracy.

A method of solving continual percolation problems with a computer was
first proposed by us in [8]. The same method was verlfied there with the aid
of a two-dimensional problem for which an exact solution is known. We report
here for the first time results concerning the three-dimensional problem.

Our purpose was to explain the extent to which the result depends on var-
ious properties of the potential. We were interested mainly in a Gaussian po-
tential V defined by the relation

Vit) = [K(r =) f(r?)d3 ", (1)

where f is a random Gaussian function with a correlator
<F(r)f(r)>=8(r -r1"), (2)
and the kernel K(;) decreases sufficiently rapidly with r beyond the limits of

the correlation radius ry. The distribution function of the potential 1s

F(v) =

2
exp (— .\iz),whereyZ:ZIKz(r)dar. (3)

—
Vry y

We shall refer henceforth not to the percolation energy ep, but to the dimen-

sionless quantity Vo the fraction of space in which V < ep
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v, = [E(V)dV. ()

- 00

We wanted not only to calculate Vo for some concrete form of the function

K(?), but also to verify the extent to which the result 1s sensitive to its

choise. Making the coordinate transformation xi = a;Xy, Wwe can easily show that

V, 1s invariant to the substitution K(T) = K(a1x, a.y, asz), where a; are abri-

frary numbers. We therefore confined ourselves to an investigation of iso-

tropic functions K(r). The calculations were performed with the following func-
tions:

1 r<cr 1-r/r r<r
Kir) = ° K 0 o
v [0 r>or, 2Ar) 0 r>or,

(5)

i

/e e < ) -/
K3(r).-{0 r>r° K, r) -r—e °, Ks(r):e °

(the function Kis(r) 1is needed for the calculation of the activation energy of
the hopping conductivity in the case of weak compensation [2]). We found that

V, = 0.17 £ 0.01 and at this accuracy 1t 1s independent of the cholce of K(r).

We were unable to prove analytically the invariance of v, to the choice of K(r).
In the literature there are many various intuitive estimates of Vo, (see [6]).

Our result is closest to the estimate of Zallen and Sher [6]. Putting v, = 0.17
in (%), we obtain ep = ~0.68y.

We note that our result vc = 0.17 pertains to a broader class of potentials.

Let us transform the Gaussian potential V with the aid of a function ¢ (V) such
that ¢(V) > ¢(Ep) at v > Ep and ¢(V) < ¢(€p) at Vv < Ep' A particular case of

the function ¢(V) may be any function that is monotonic in the interval (-w, =),
The potential ¢ obtained in this manner is generally speaking not Gaussian, but
it is easy to verify that the percolation level in it is ¢(€p), and the critical

fraction of the space Vo turns out to be the same as in a Gaussian potential V.
It has turned out that the use of potentials not from this class can change v,

considerably. We have investigated the potentials V'(?) = V™! and V"(?) = -|V],
where V 1s a Gausslan potential obtained with the aid of the function K:(r). As
a result we obtained v'! = 0.27 and v" =
v _ -0.24. e ¢

The calculations were performed
0,9} with a BESM-6 computer. The function [
was set with a random-number generator
at the points of a primitive cubic lat-
tice with unity period, located inside a
20 X 20 X 20 cube. At each point we
calculated the potential in accordance
with (1). Using the method described

in detail in [8], we found the percola-
tion level corresponding to the appear-
ance of paths between opposite faces of
the cube. The figure shows the depen-
a7 ! dence of the fraction of points at

' 7 z h J which V < €, O To at K(r) = Ki(r). Each

0,2

point was obtained by averaging
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approximately over 10 realizations of f. The absolute error in the calculation
of the mean value did not exceed 0.01. As rgy - 0, the values of the potentials
at the points turn out to be entirely uncorrelated, and we obtain the results of
the lattice problem of nodes, v, = 0.32 [7]. At re >> l,vc ceases to depend on

ro, corresponding to the transition to the continual problem. The limiting
value of v, is indeed the critical fraction of the volume, which is of interest

to us. We obtained similar results for the other potentials mentioned above.
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It is shown that the elastic properties of supercon-
ductors with B-W structure follow from the assumption
that the a-electron energy spectrum is almost flat.

Superconductors of the A3B type have a interesting property in that the
transition to the superconducting state is a structural transition at a tempera-
ture Tm close to Tc, and if there is no transition obtained, a tendency to this

transition is observed, manifest in a softening of the corresponding elastic
moduli [1, 2]. In all the known cases, T, differs from T, 6 by not more than a

factor of two, whereas the temperature dependences that anticipate the transi-
tion extend to temperatures 300 - 400°K.

It was noted in [3] that owing to the small overlap of the shells, an im-
portant role in the structure of B-W can be played by three systems of linear
chains of transition-element atoms. The approximation of strong coupling of
the d-electrons in the chain was involved to one degree or another in all the
subsequent studies [4 - 61, in which an anomalously large de?sity of states
v(ep) was assumed, owing to the singular behavior v(e) v e=!'/2 at the edge of

the one-dimensional band.

It 1s shown below that the main properties of this group of compounds can
be understood within the framework of the concrete symmetry of the A-15 struc-
ture on the basis of the concepts of the Fermi-liquid theory, with allowance
for the changes introduced by the one-dimensional character of the filaments.
Indeed, in a one-dimensional metal the Cooper pairing 1s connected with the
Peierls doubling of the period [7]. It will be made clear below that it is also
connected with the tetragonal deformation in the B-W structure. The literature
contains discussions both of the non-phonon superconductivity mechanisms in
these compounds and of the role of the structure instability in the increase of

379



