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The hydrodynamic equations for solutions of two superfluld ligquids were
derived in [1], where it was also indicated that undamped sound oscillations of
three types should propagate in such solutions. It can be regarded now as
established that a phase transition to the superfluid state occurs in ligquid
He?® at a temperature on the order of several millikelvin [2]. There can be no
doubt that a similar transition can occur in solutions of He? in He*. At suf-
ficiently low temperatures, Cooper pairing of the He?® atoms should set in and
they should go over into the superfluld state. We wish, in this connection, to
return to the question of the hydrodynamic properties of a mixture of two super-
filuid 1iquids, and investigate, in particular, the propagation of sound in such
mixtures.

We write down the hydrodynamic equations of a mixture of two superfluid
liquids [1]. The system of equations includes:

a) the continuity equation (p is the density and ¢ the concentration)

f;‘l + div(pslVS1 + pnlvn) =0 ’.’2 + Cliv(pszvs2 + pnzvn) . (1)

Py =pPC =pPg1 T Pp1» P2=P(1‘C)’Psz“f’n2

(381 and 352 are the velocities of the superfluld motion of components 1 and 2,
1),

respectively, and %n is the velocity of the normal motion'’;
b) the continuity equation for the entropy
S+ divSv, _ 0] (2)

¢) the equations of the superfluid motions

. v ?
Vsl + V(”I - =" ansl> = 0’
2
(3)
v 2

VsZ * V(#Z - 3[ + VnV52> = 0’

where p: and U, are the chemical potentials defined by the following relation
for the energy e:

1)The normal density pnl = pec - psl determines the number of normal atoms
of the Fermi component, and differs from the normal density S of the Fermi

excitation by a factor m¥/m, where m*¥ is the effective mass. The normal den-
sity pn2 therefore includes not only the normal density PhB of the Bose exci-

tations (phonons) but also part of the normal density of the Fermi excitations
pnl(m*/m - 1), i.e., Pho = Py t pnl(m*/m - 1).
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de = TdS + pydpy +prdpy +p (v - Valdivg, - Vo) -
(4)
* psZ(VSZ - Vn)d(vsz - vn);
d) the equation of total-momentum conservation
i=ra Ve FPs2Vsy v PV, l, + o0l Sax 0, (5)
where the i =
momentum flux tensor is equal to (pn Poy t pn2)
L, = PsiVsti stk * PsaVs2i Yook T PnVai Yak T PO, ’ (6)
and the pressure is
p=-e+TS tuppy +uyp, (7

It 1s convenient to introduce in place of u; and p, the new potentials u = cu; +
(1L -cluz and £ = u; - H2. We then have from (7) the following identity for
the pressure (o = S/p):

1
—dp = ¢dT +dy - ¢de .
0 (8)

We now obtain the acoustic solutlons of the system (1), (2), (3)4 and+(5).
Linegrizing these equations and eliminating from them the velociltles Ve1s Vgoo
and V> We obtain three wave equations

.
U

po(aAT - (1-c)AL) +pi:'—pnIT:0, (9)
¢ 9

psz(oAT‘cAé)-—pE—pnz—i:O, p - Ap = 0.
o

We seek solutions such that all the thermodynamic quantities vary like

expliw(t - x/u)] (plane traveling wave). We choose as the independent variables
p, T, and ¢. Then the coridition for the compatibllity of the equations in (9)
yields a dispersion equation that determines the square of the speed of sound

06 _ g Ps 50 oT . PstPsa Pa ﬁ N 2(1 N Ps1Ps2fp, i(ﬁ)z N
Pn do de dp PnP 2\ gc

Pap |Ps el P
9T  PsiPsa]Pa] 96\ 9P psiPsy LaT/A¢  dp 1y dpy
+udEFl— + — | «—) 4.«——~*g——-—+——2<—) -
Pn o p.p P | dc/ dp P, P do-\dc dp p° \dc
W& a7
_ Psipsy 0 o 0T op (10)

p,p dc do  dp

We have 1ntroduced here, for brevity, the notation

2

2 1 ds  PsaP .
i7=1“"~—“(PSI(1—C)"P57C)—‘~—i+—s—~s—2'p"(—l——aa)
o= P < o dc Pap [Ps o dc /-
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In the derivation of (10) we have neglected the terms with the derivatives
(3p/3T). Allowance for these terms results in negligibly small errors in the
sound velocities. The obtained equation is cubic in the square of the speed of
sound u®. It has three real roots corresponding to three types of undamped
sound waves. We note that if one of the mixture components is not superfluid
(psl = 0), then the first equation in (9) loses its wave character, and estab-

lishes only a connection between the oscillations of the concentration c and
the entropy o. In this case the dispersion equation becomes quadratic and deter-
mines the speeds of the known first and second sounds in solutions of He? in He®

L31.

The roots of (10) can be easily obtained because one of the roots is small
in comparison with the two others. The first root of this equation

o2 =2 (11)
p

determines the speed of first sound, at which the compression (pressure) waves
propagate. The second root

(12)

_ Ps 5.2 aT Ps1Ps2 ac Pn
Ps

Py do- PP de

determines the speed of "second" sound, at which the temperature and concentra-
tion oscillations propagate.

Finally, the third root

pslpszaz 9¢ . Psi1Ps2 1P, ¢ do
-2 v [ ] (13)

pspﬁ-2 de pspﬁ-z ps| dc aT

determines the speed of "third" soandz). The propagation of the "third" sound is
a unique property of a mixture of two superfluid liquids. At the phase transi-
tion point (pSl = 0) the velocity us; vanishes, and the speed of second sound is
equal to

Ps aT aé)
2 = _f=2. 2 2
Y3 %G'aa‘+ € 5e (14)

(which coincides with the result obtained in [3] for a solution of nonsuper-
fluid He® in He").

The density pn1 should decrease exponentially with decreasing temperature.
Near T = 0, the speed of third sound tends to the value

o= e-c)1 s (15)

The speed of second sound uz tends in this limit (pnl << pn2) to the value
L= (16)
Uy T U/ V3

2)This sound must not be confused with that propagating over films of
liquid helium IT, which is also called "third."
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(u1o is the speed of first sound at T = 0).

In (11), (12), and (13), we have neglected small terms of relative order
c[(1/p)(9p/3c)]?, which for weak solutions is always legitimate (¢ < 0.06 in
degenerate solutions of He?® in He*).

Propagating with the speed of "third" sound are the oscillations of the
concentration c¢. An analysis of (9) shows that these oscillations are coupled
wilth the oscillations of the density p and of the temperature T; this makes 1t
easy to exclte the latter oscillations.
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