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It is shown that when the stability of the magnetization of an electron gas at the
peaks of the quantum oscillations of the differential susceptibility is lost,
magnetostriction can give rise to a sharp decrease of the elastic moduli of a
metal.

PACS numbers: 75.80.+q

The amplitude of the quantum oscillations of the magnetic susceptibility y of a
metal in the de Haas—van Alphen effect can reach such large values that the stability
condition 1 -4y > 0 is violated at the maxima and there appear jumps of the magne-
tization as functions of the magnetic field as well as “diamagnetic” domains.[? It is
shown in the present communication that near the instability points, owing to the
coupling of the magnetization of the electrons with the lattice, anomalies can appear in
the elastic moduli of the metal. Although the influence of magnetostriction on the
quantum oscillations of the elastic moduli has already been considered inf?), the ap-
proach used there did not make it possible to detect the effect predicted here.

This effect seems from the fact that in a quantizing field B the additional inhomo-
geneous field b(7) leads to a redistribution of the electron density, i.e., to the appear-
ance of an increment SN(r)=(dN/JIB)b(r)=(—3dN/IEX35/3B)b(r) to the initial con-
centration N (£ is the chemical potential of the electrons). On the other hand, the
local charge densities of the electrons and of the lattice are connected by the electro-
neutrality condition

SN(r) - Qdivu(r) =0, (1)

where Q= —eN is the charge density of the undeformed lattice and u(r) is the dis-
placement vector. Therefore the field b(r) leads to deformation of the metal and conse-
quently the magnetic ordering of the system of electrons in the Shoenberg effect
should be accompanied by a restructuring of the lattice.

To obtain a formula that describes the oscillations of the tensor of the elastic
moduli, we assume a simplified model that takes no account of the deformation
mechanism of the interaction of the electrons with the lattice; a more complete analy-
sis does not lead to a qualitative change of the main conclusions. In such a model, the
electronic part of the elastic force is due to the self-consistent field produced by the
strain. The potential ¢ of the field is determined by Eq. (1), in which it is necessary to
take into account the corresponding change SN, putting
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where the field b is now determined from the equations

J oM oM |
rot b =4z rotdM=4nrot{ - — ep + — bJ; divb =0, 3)
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M is the electron magnetization. By finding the potential from the system (1)~(3), we
get the force acting on the lattice

2 /9¢
F==-0Q0Véd=eNYd=(N /Ng)Au-NV,———b), (4)
\ 9B
which determines the electronic part of the elastic moduli. The first term in the right-
hand side of (4) is connected with the usual contribution of the electrons to the
compression modulus, while the second term is due to the change of the magnetization
M upon deformation. By eliminating the potential ¢, we can reduce the equation for
the field b to the form

oM N |,
P0t1(1—477)()b}=_4”r0t__ __ divu , (5)
3¢ Ny

where y=0M/IB+(OM/IENI;/IB)=xp+x. is the susceptibility of the electrons
with allowance for the change of the chemical potential in the magnetic field. It fol-
lows from this equation that at small values of the susceptibility (y <1/4) the magne-
tostriction contribution to the force F is relatively small because of the smallness of
4ry, in comparison with unity; the main contribution to the quantum oscillations of
the elastic moduli is made in this case by the state density V.. On the other hand,
under the conditions of the Shoenberg effect, the field b increases near the points of the
magnetization instability (when 47y~ 1), thus ensuring “softening” of the lattice.

For a metal with a spherical Fermi surface, the anomaly manifests itself in quan-
tum oscillations of the velocity s of the longitudinal sound propagating across the field
B. With the aid of (4) and (5) we obtain

N2 4 2 T A ]
32 = 1+ . Xé' = N A — (6)
PuNg 1-47X/ p ¢ N1 =drcy’A) |
where p,, is the mass density of the lattice, and the oscillating parts of the quantities

NyX, and y were separated with the aid of an asymptotic expansion in the ratio of the
cyclotron quantum #f2 to the Fermi energy Ep:

A
Ne =g(1+ =)s X =wy’a;  Xp=-ky®A% N
Y

145 JETP Lett., Vol. 27, No. 3, 5 Feb. 1978 Bagaevetal 145



-0 , 1 Q,.
A=-20¢ cosn(y - —Z)cosn?)— R (8)

y=QRE/#2)"?, #if2, is the spin-splitting energy, §=2m*7T/#2, and T is the tempera-
ture in energy units. Formula (8) for the oscillating function 4 was assumed under the
assumption that 8~ 1. The instability of the magnetization appears at the points for
which 47«y°4 =~ 1; when these points are approached, the electronic part of the sound
velocity s tends to zero in accordance with (6).

The results presented above can be obtained also by purely thermodynamic
means, if the stress tensor is obtained by differentiating the thermodynamic potential
of the electrons in a magnetic field with respect to the strain tensor. In this case it is
necessary to use the thermodynamic potential in terms of the variables £ and M (with
account taken of the term 27M?, seel'-?1), and with allowance for the dependence of
the quantities £ and B on the strain tensor (at constant H), as well as for the {(B)
dependence.

We note in conclusion that by virtue of the inequality y <y [see (7)] it is possible
to observe the predicted anomaly in the dependence of the elastic moduli on the
magnetic field in a region close encugh to the instability points.
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