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It is shown for the low-energy NN interaction, within the framework of the
coupled-channel scheme, that in the case of a small annihilation radius
r.~my “1~0.2 F and strong attraction it is possible to obtain a consistent
description of the small widths of the quasinuclear mesons (I' ~10-30 MeV) and
the large annihilation cross sections. The slow NN annihilation cross section
deviates in this case from the 1/v law. The character of the deviation depends on
the potential NN interaction.

PACS numbers: 13.75.Cs, 11.80.Gw

A simple nonrelativistic model of two coupled channels # and / was proposed
recentlyl!l for the study of the effect of annihilation on the position and width of the
coupled state of a nucleon and antinucleon. The channel # corresponds to heavy
particles with mass m and is the analog of the NN system. An attraction potential
V ,(P) acts between N and N and leads to formation of quasinuclear resonances.? The
channel / is the analog of the boson annihilation channel and describes light particles
with mass g <m. Transitions between the channels are effected by a short-range po-
tential ¥, chosen for simplicity in the separable form V', =Ag(r)g(+'), where
g(r)=exp[ —r/r,]/r. It is shown in!"] that at any constant A the widths and shifts of
the resonances due to annihilation remain small, on the order of 10-30 MeV provided
that the ratio of the annihilation-potential radius r, to the bound-state radius R is
small (»,/R ~10™").

The existing experimental data on the NN interaction at low energies (E,., 2 25
MeV) indicate that the annihilation cross section (ov),,~26 mb is not much less than
the cross section for elastic scattering o,;,~ 100 mb (we use a system of units c=#A=1).
The question arises whether it is possible to obtain at a small annihilation radius a
large annihilation cross section comparable with the elastic-scattering cross section.

This question was answered in the affirmative by 1.S. Shapiro.l®! The pp annihila-
tion cross section was defined by the formula (ov),,= (6v),, ¥,(0) P, in which the
quantity (ov),, could be obtained from dimensionality considerations: (gv),, ~ 2772,
and the square of the modulus of the wave function ¥,(0) of the continuous spectrum
at zero determined the amplification coefficient of the annihilation cross section.

It is important to obtain expressions for the annihilation cross section in an exact-
Iy solvable model of coupled channels. To find the amplitudes it is convenient to write
the Schrodinger equation in integral form
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with G,=[E—p/m—V,(N]", G;=[E+2(m—p)—k*/u]", and the interaction V
takes into account the mixing of the channels: V'=(0/V ;,)(V ,,;/0). To find the elas-
tic-scattering and annihilation amplitudes it is necessary to find the solution of Eq. (1)
in the form of a “plane + diverging waves” in the 4 channel and “diverging wave” in

where ¥ is the column (¢h); the Green’s function G is a diagonal matrix: G =(

the / channel. To this end we choose ‘170=(¢8h ), where ¢, is the solution in the

form in channel 4 without allowance for the ¥, interaction. Taking into account the
separability of ¥, we easily write down the solution of Eq. (1).
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The coefficient of the diverging wave in [y,> determines the amplitude f}, of the
transition of heavy particles into light ones. The expression (2) for |/,> contains as a
factor the matrix element <{gli/,o>. This quantity can be easily estimated by taking into
account the smallness of the ratio r,/R:
4n
ho)
< > = 0) —=—, (3)
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where p=muv is the momentum of the A particles”, and B=r_!. For p£B the asymp-
totic expression for ¥[r) at large distances is
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It is seen therefore that the quantity #{"°(0), which stems from the estimate (3), enters
in £}, as a factor, and leads, as will be shown below, to an increase of the amplitude £},

(4, is a dimensionless constant: A =A,/47r}V mu , k3=p[E+2(m—u)]).

We note that the exact solution of the problem (2) in explicit form corresponds to
the following sequence of summing the perturbation-theory diagrams: the entire per-
turbation-theory series with respect to the potential ¥, is summed in each order in the
constant A (since we have used the exact Green’s function G, throughout). As noted
inP), this sequence of summing the diagrams leads to an answer that does not coincide
with the so called “exact solution” of the problem of bound-states in an optical poten-
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FIG. 1. Dependence of the enhancement coefficient
jt0,(0)} for a square well on the energy of the colliding
particles (in MeV); well radius 1.2 F. The different
plots correspond to different values of the potential
depths: U,=70 meV; U,=90 meV; U,=120 meV;
U,=520 meV; U;=550 meV; ;=700 meV. The en-
hancement coefficients for U, and U; have been de-
creased by a factor of two.

tial, a solution that regards annihilation as the imaginary part of the potential.¥]
Owing to the incorrect sequence of summation of the diagrams in the optical ap-
proach, the enhancement coefficient i ,(O)f, which follows from (3), does not appears
for the annihilation cross section. To describe the large annihilation, it was necessary
to introduce inl*l a large radius of the imaginary part of the potential, and this led to
vanishing of the bound states in the NN system.

In our approach the amplitude f},, turns out to be large also at a small annihilation
radius r,. In fact, it can be shown that if there are no narrow resonances in the heavy-
particle scattering amplitude without allowance for the coupling of the channels, then
the exact Green’s function G, in the denominator of expression (2) for ji,> can be
replaced by the free Green’s function G,,. The amplitude f,; then takes the form

ZAora (ho )
fhi = > 3 — v, A0, (5)
1-A2 B4(B-ip,)™" (B~ ik, )

where p3=mE. It follows from (5) that at |12 1 the amplitude f;, is of the order of
r 4"(0), and we arrive at Shapiro’s formula for the annihilation cross section

(0], = (50 4 1 1,0)] 7, ®

where (gv),,~4m12 ko/m~2.5 mb.?

We now investigate the enhancement coefficient [¢,(0)?. In the general casel® it is
expressed in terms of the Jost function A—p)jY, (O =1/A~—p)P. At low energies,
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when the scattering amplitude in a potential ¥, that is finite at zero is determined by
the nearest pole with a binding energy €, we can present for [t/ ,(0)° the simple
formula

U, +E 1

o v F e )

|y, (0)} 7 =

in which U, is the depth of the well. The function #(v) depends on the details of the
potential, and for order-of-magnitude estimates it can be replaced by unity. Thus, at
Uy/€,>1 the enhancement coefficient i, (O)F can be large. To illustrate the foregoing,
Fig. 1 shows the enhancement coefficients ji,(O)} for a square well. Realistic models of
the NN interaction correspond to well depths U, such that the well contains one or two
levels. It is seen that on the average, with increasing depth of the well the enhancement
coefficient increases and becomes very large at those values of U, at which the next
level occurs. The quantity U, can be estimated from the shifts of the Coulomb levels of
the pp atom.!*! An upward shift of the 1S level by 2 keV corresponds to an enhance-
ment coefficient [ (0)f =7.3(U,=~90 meV), in which case (o0v),,= 18 mb. In the case
of the same shift of the Coulomb level coming from the second level in the U, well, the
enhancement coefficient and correspondingly the cross section turn out to be larger by
one order of magnitude. Thus, large annihilation cross sections are obtained in our
model at small annihilation widths (seel!).

We note in conclusion that, as follows from Fig. 1, the enhancement coefficient
[ (O)f decreases with increasing energy. This should lead to a deviation of the annihil-
ation cross section at low energies from the 1/v law: the quantity (ov),, should in-
crease with decreasing v. The character of the growth is determined by the quantity €,
+E. At U» E» ¢, the value of (0v),, increases like 1/v%, and the smaller €, the steeper
the growth of (ov),, as v—0.

The authors thank 1.S. Shapiro and V.E. Markushin for discussions and valuable
remarks.

"This estimate is valid at potentials ¥, that are not too deep, such that mV, </
“This figure is obtained at £ =780 meV=m,,. At A2~ 1 the amplitude (4) contains an enhancement of the
type B/k, in addition to the estimate f,, = r,1,(0). This enhancement is the result of the pole of A3=1 on the

threshold of the light particles as a result of the coupling of the channels, and we disregard this enhance-
ment in the estimates of f,, since it appears only for the special choice of the constant A2~ 1.
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