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It is shown that in an ‘“‘easy-plane” tetragonal ferroelectric (ferromagnet) the
interaction of strongly developed critical fluctuations can lead to a splitting of a
continuous phase transition into two first-order transitions that are close to each
other in temperature.

PACS numbers: 77.80.Bh

We wish to call attention in this article to an interesting effect that can be ob-
served in anisotropic systems under conditions of strongly developed critical fluctu-
ations. We have in mind a phase transition into a low-temperature phase which is not
energywise most favored from the point of view of the Landau theory, as a result of
which the phase transition should split into two transitions that are close to each other
in temperature. The theory of this phenomenon is constructed below for the case of a
tetragonal crystal of the “easy plane” type with dipole-dipole interaction. The choice
of the model is governed by two factors. First, the critical thermodynamics of such
systems has not yet been discussed in the literature, notwithstanding the many known
ferroelectrics and ferromagnets that are tetragonal in the low-temperature phase. Sec-
ond, the problem can be solved here analytically (without resorting to a computer), in
contrast, say, to the case of a cubic crystal with dipole forces and an anistropic correla-
tion function.

The effective Hamiltonian of the polarization-fluctuation field #(q) in a tetrago-
nal ferroelectric (ferromagnet), with account taken of only the essential invariants, is
given by
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ere n,=gq./q, the “mass” x} depends linearly on the temperature, and the constants
,h',h" are determined by the magnitude and form of the spatial dispersion of the
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short-range and dipole-dipole potentials. The tetragonal gap A, and the dipole gaps
4,4',4" in the spectrum of the fluctuations characterize the anisotropy energy and the
energy of the dipole-dipole interaction.

It is known that in ferroelectrics 4,4',4" ~g,» k4, where g, is the cutoff momen-
tum. Let the crystal anisotropy be large enough, i.e., 4,~¢,. Then the critical renor-
malizations of 4,4',4",4,, which, just as the ““mass” renormalization «,, are of the
order of «,, can be neglected. The renormalizations of the dispersion parameters
foh.h'sh” are also negligibly small; they are known to be determined by the quantity
92,5(0)/3¢* (2 4(a) is the mass operator), which is characterized by a numerical
smallness of the same type as the smallness of the critical exponent 7.’ Taking all this
into account, the Green’s function G,5(q) of our problem in the limit when
K.,q €4,4’,4" .4, can be represented in the form
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here « is the reciprocal correlation radius (the renormalized “mass™).

The critical thermodynamics of the system is determined by the form of the
temperature dependences of the dressed coupling constants y,=1I",(0,0,0,x),*!
where I";(q,q',9",«) are the total vertices. The evolution of ¥, with changing tem-
perature is described by the equations of the renormalization group (RG). An exami-
nation of the diagram expansions of the Gell-Mann—Low functions that enter in these
equations reveals readily that under the assumption made above only two of the four
RG equations are independent, those for ¥, and 7, and the critical behavior of the two
other coupling constants is uniquely determined by the temperature dependences of ¥,
and y,. We change from the vertices y; to the dimensionless invariant charges
g,=v,;/32mx . Then the RG equation for the charges g, and g, in three-dimensional
space and in the lowest approximation in g, which is optimal in the present case,*!
will take the form
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where
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It is easily shown that all the singular points of the system (3) lie at the zeros of
g.=E&g,, while £ satisfies the equation

(£-0)(g%+ 3 =0,  6=3I/1 . )

Thus, the system (3) has one nontrivial singular point g} =1/9(I,+6I,),g;=0g;. This
is a saddle point and lies on the “Heisenberg” line g,=g, at f=0. The picture of the
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FIG. 1. Phase trajectories of the system of equations (3).
The region of instability of the Hamiltonian (1) is shown
shaded. The number 1 denotes the ‘“Heisenberg” line
g:=g;, and the number 2 denotes the separatrix g,=06g,,
and the position of the separatrix corresponds to f> 0.
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phase trajectories of the system (3) is shown in Fig. 1. The parameter 6, which deter-
mines the slope of the separatrix g,=8&g,, ranges from 3 to 0 when the anisotropy
constant of the fluctuation spectrum f changes from —2 to «.?

We see that at all values of the bare coupling constants the effective Hamiltonian
becomes unstable in the critical region, and the phase transition in a tetragonal ferro-
slectric is of first order. Much more interesting, however, is the fact that the structure
of the low-temperature phase can differ in this case from that predicted by the Landau
heory. In fact, at /50 the inclination angle of the separatrix g,=6g, is not equal to
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FIG. 2. Phase diagram of a tetragonal ferroelectric, shown
2L as a plot of the anisotropy of the four-phonon anharmonic
interaction vs temperature. The tetragonal (T), rhombic
R / (R), and monoclinic (M) phases are separated from one
/ another by first-order phase-transition lines. The shape of
1t 1/ T the “beak” corresponds to the slope of the separatrix on
/ Fig. 1, and the dashed lines show the limiting positions of
/ the “beak” at f— —2 (1) and f~o (2).
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45°, and there exist on the phase diagram trajectories that cross the “Heisenberg” line.
This means that situations are possible in which the crystal, having a binding-constant
bare anisotropy of the “rhombic” type, will go over after the phase transition into a
monoclinic phase and vice versa. At the same time it is clear that far from the critical
region the thermodynamically stable phase is the one predicted by the Landau theory.
It follows therefore that with decreasing temperature a second phase transition should
occur in the crystal—from one low-temperature phase (non-Landau) to another. This
transition obviously should be of first order. An idea of the topology of the phase
diagram of a tetragonal ferroelectric in the described case is provided by Fig. 2. The
critical fluctuations and the anisotropy of the dispersion of the correlation function
lead to the appearance on this diagram of a characteristic “beak” formed by the first-
order phase-transition lines.

The effect of splitting of the phase transition is not restricted to the model consid-
ered here. This phenomenon should be observed in a large number of other cases,
when a first-order phase transition takes place under conditions of strongly developed
critical fluctuations and the correlation of these fluctuations is anisotropic at finite g.
For example, in those ferromagnets and antiferromagnets where the interaction of the
fluctuations of the order parameter leads to a change in the type of the phase transi-
tion,[>7] the anisotropy of the exchange interaction can cause splitting of this transition
into two. In this case the separatrices in the space of the invariant charges will not
coincide, as above, with the high-symmetry lines (of the “Heisenberg” type), and
“beaks” will appear on the phase diagrams.

We thank S. L. Ginzburg and S. V. Maleev for a discussion of the results.

DActually the renormalizations of f, h: A',h” become noticeable only in a very narrow and practically
unattainable vicinity of T’ c.[l !

2 As seen from (2), the phase transition will go into a homogeneous (ferroelectric) phase only at values of f
in the interval {(—2, ).
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