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Within the framework of an exactly solvable model with a linear spectrum, it is
shown that at T =0 a magnetic-phase transition from the nonmagnetic into the
paramagnetic state, due to the change in the character of the spectrum of the
spin excitations, can occur in one-dimensional system electrons with attraction

between the particles.

PACS numbers: 75.30.Kz

The influence of the magnetic field on the asymptotic forms of the correlation
functions at A>T (h=p 5 H, where u 5 is the Bohr magneton) and on the symmetry of
the ground state of a one-dimensional system of electrons was considered in ' in the
parquet approximation. This approximation is valid for all values of 4 if the electron
interaction with momentum transfer ~2p . is repulsive, but in the case of attraction,
when a gap exists in the system,** the applicability of this approximation is limited by
the condition A3 4. To study the properties of a one-dimensional system in the case of
attraction at an arbitrary ratio of # and 4, we turn to a model with a linear spectrum,"’
which can be solved exactly at Uy=—6mv /S, |U [€¢7v [, where the constants
U\and U | describe backward scattering processes without and with spin flip, respec-
tively (v » is the Fermi velocity).

In this model, using the boson “‘representation” of fermion fields,”* one changes
over to a description in terms of collective excitations of the density (p ) and of the
spin { o). To study the influence of the magnetic field on the properties of the system
it suffices to consider spin degrees of freedom, whose Hamiltonian at A=0 is given by
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where L is the dimension of the system, v ./a plays the role of the effective width of
the band, and o, (k)= 2*52sc F(p+k)c,(p) are the operators of the spin densi-

DS
ty (n=1 or 2 is the number of the field component, s= 41 is the spin variable ). The
o ,(k) algebra” makes it possible to define them as density operators of spinless

fermions (SF): ¢ ,(k)= Ea (p+k)a,(p) When using the boson “representa-

]
tion” for the new fermion field,'® the Hamiltonian 7(;, at the point U= —67v /5
becomes equivalent to the single-particle Hamiltonian®’

A - 3 po Lal(pJay(0) = a3p)ay(p)) + AX Lallp)ay(p) « b 1 (2)

with a gap spectrum £ (p ):\/psz—AZ , where v=4v ;/Sand A =|U /27w a (the
momenta of the particles are reckoned from +p (n=12)).

Allowance for the interaction of the electrons with the magnetic field adds to ( 1)
a term \/Zh[al( 0)+0,(0)], which is in turn equivalent to adding to ( 2) the term,
h¥af(p)a,(p) that leads to renormalization of the chemical potential of the SF:

n.p

u(h)=—h. At all h <4, the value of u is inside the forbidden band and the ground
state of the SF is dielectric. 4 penetrates into the lower band E.(p ) at h> 4, and the
system becomes metallic.

The “dielectric~metal” transition in the SF system means a phase transition with
respect to the magnetic field in the ground sfate of the initial electron system, the
critical field being 4 . =4 . In the region & <4 all the properties of the electron system
turn out to be at 7=0 the same as in the absence of a field: a gap 24 remains in the
spectrum of the spin excitations, and the magnetization and the magnetic susceptibil-
ity are equal to zero. At 1> A4 the long-wave part of this spectrum, corresponding to

the momentum interval |k{<2k,, where koz—-v’l\/ h*—A4? becomes gapless. In this
case a magnetic moment proportional to the number of free states in the lower band of
the SF spectrum appears. At T=0 we obtain

e N (3)

2 Tv
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The susceptibility is equal to
2 h
aM 23 | ( 4 )
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LT

and diverges as ~—4 +0. In strong fields ( A>A4 ) the behavior of M and y corresponds
to the usual Pauli paramagnetism. In this limit, the ¢ excitations are described only by
the Tomonaga-Luttinger model with a line spectrum, which is equivalent to retention
of the first two terms of (1).

At finite temperatures, the transition at A=4 becomes smeared out, the thermo-
dynamic quantities have no singularities, but they exhibit an anomalous behavior in

the region | —Al¢T¢4:M ~V'T14 s X ~Va/T (M and y are exponentially small at

T<€4 —h (h <d). We note that in this region the temperature dependence of the specif-
ic heat of the system should deviate noticably from linearity, since its spin part

c, ~V'14 exceeds the contribution of the density excitations ¢ , ~T'.

At h=A, a change should take place in the law governing the decrease of the
correlation of the three quantities whose excitation in the absence of a magnetic field
entails a loss of threshold energy 24. This pertains primarily to the magnetization
correlations, which reduce to correlations of the density fluctuations in the SF system.
At h <A we have the exponential law

< AM(x JAM(O) > = ~(p3 A/2af x| exp{-2A[ x|/ v ), (5)

and at 2> 4 the power law
2

< AM(x)AM(O) > == —Hp sink,x at k=A<< Aand|x|>> v/A,
m X
(6)
k
7Xx

The situation is analogous with respect to triplet superconducting ( TS ) and antiferro-
magnetic (SDW ) correlations. At U= —67v /5 the contribution of the o degrees
of freedom to the corresponding correlators K 15( x ) and K gpw ( x ) are determined
by the mean value® K ;7 (x )= (x5 (x)¥,(0),(0)), which describes the
pair correlations in the SF system. At 4 <4 the presence of the gap in the spectrum of
the single-fermion excitations of the Hamiltonian ( 2) leads to the exponential rela-
tion,® K S (x )~x"exp( —2jxjd/v ), which gives way at 4> 4 to the power law:

K(x)~ (v?/A*x* )(k2 x* = sin’k x) at h~A<< Aand|x| >> v/A,
(3)

Ki(x) ~ x"2sin?(hx/v) at A>> AL (9
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We note that magnetic-field phase transition described above is not a specific
feature of the model chosen by us™ or of its exact solution for the particular value
Uy=—6mv /5, but is the consequence of a gap in the spectrum of the spin excita-
tions of the one-dimensional system, a gap that appears in the case of short-range
attraction between the particles. This is indicated, in particular, by the results of ¥,
where numerical solutions of the equations of Lieb and Wu™ was used to plot the
magnetization for the one-dimensional Hubbard model with half-field band in a mag-
netic field for coupling constants of different values and signs.
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