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A theory is constructed for spin glasses with n '} <1, where n,, is the
magnetic-impurity concentration and [ is the mean free path. The specific
heat, the magnetic susceptibility, and the resistivity are obtained at high
and low temperatures and in the “transition” region.

PACS numbers: 75.40.Bw

The interaction between localized spins placed in a nonmagnetic metal is ex-
pressed by the well known formula (see"’)
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where J is the electron~impurity exchange energy; n is the density of the host ~ metal
atoms; p, is the Fermi momentum; / is the electron mean free path. It is customary to
consider the case when the mean free path is large, />n ;'/*, where n ,,, is the magnet-
ic-impurity concentration. In this case the exponential factor can be neglected and the
RKKY interaction sets in®. Analysis of this interaction is greatly hindered by two
properties: it alternates its sign and it is long-range in character. We consider a case
which is in principle realizable if the metal has a sufficiently large concentration of
nonmagnetic defects. The interaction then becomes short-range, and each impurity

spin interacts only with one nearest neighbor.

At the lowest temperatures the bulk of the spins are frozen, and the thermody-
namic characteristics, as well as the temperature dependence of the resistivity, are
determined by a few weakly-coupled spins, i.e., those whose nearest neighbor is far or
those for which cos2p,r in (1) is close to zero. Since the spin of the nearest neighbor is
frozen, the spin under consideration is under the influence of an effective field H equal
to

H = Vqu exp(—r/l)r—a) @)

where g=|cos2p,r | and V,=(J/n)pom/(47*).

It is thus necessary to find the corresponding quantity for the given field H, and
then average over the probability distribution of the different values of ¢ and ». For
example, for the heat capacity per unit volume we have
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where ¢ (x)=x?/sinh>x. At low temperatures the important role in the integral is
played by small g. The resultant integral with respect to 7 is calculated by the saddle-
point method near the “saddle” value r,=(4mn /)" This yields

CaT 170(284-1)(4"""113) 4 exp -'3—(41mml $=1/21, )
1 p? .
3 372 (4mz 13) 3/4exp -—-(4”n /3) 1/2 lﬂ"]'?' ) )

(In the calculation of the magnetic susceptibility y we took into account the fact that
the characteristic field H can be arbitrarily oriented relative to the external field.)

To find the temperature dependence of the resistivity we use the general formula
oft*!: *
2m? . d% d 3p.
Jopp v(v=v)1-f)f:
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where n,=p3/(37) is the electron density, p, is the contribution of the potential
scattering, fo(£) is the Fermi function, {=€—yu,

Wy pe = n,,,(f/n)2K(§p - &)

p=p, + ’ ©)

K(w) = }odzei“” <S(0)S(t) >,

S(¢ )=exp(i”t)S exp(—i#t), 7 =—HS, and {.-) stands for a thermodynamic
mean value. As a result we get:
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where po=ner/m, [(1/2)=n%*, [(1)=@r/2)—@/3V3)  and
F(S1)=25+1/240(1/25).

Formulas (4), (5), and (7) are valid at T€T,, where T, corresponds approximately
to the spin-interaction energy at g~ 1 at the “saddle-point” distance (4mrn 1)

T,= V8%, (470 1%)3 bexpl-(4mn, 1 %)~ 1/2] (®)

At T T, small g do not play a special role in the integrals and different temperature
dependences are obtained. Calculation with the same general formulas yield

C=n,(4nmn I %) In(2S + 1) l’nz(Vos 2nm/T) exp{-—%—(‘lﬂnml 3)ln3(V°S 2nm/ T)],
®
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X=nmy2S(S+ 1)T—lexp[—;—(‘lﬂnmls)lna(Vosznm/T)]’ (10)
p=p {1+ 4rmmVor[52+ Sexp[-—-:il-(‘lﬂnmla) lna(VoS 2nm/T)]] i, 1)

These formulas cease to be valid at TR @, where the “transition temperature” @ is
equal to

@.a—lVosznmexp[—al/a(n;lfal)_l]" (12)

where a=38 /47 and B, =134-0.1 (see below). At T2 @ the individual weakly-coup-
led spins cease to play the preferred role.

If 750, then we can use the virial-expansion idea developed in'*. The first-order
increments to the expression for the free spins (the latter may be equal to zero) is
determined by the pairs located at the ‘“‘thermal” distance »(7') defined by the
condition

VS%=T) expl—~r (T)/11=T. (13)

(]

If this distance exceeds /, i.e., @<T«T,, where

T,=V,5%1% (14)
then the method of'* yields the following expressions:

C=4nn2 3 1n2(V 52/ T1%)[1n(25 + 1) -«4L In(4s + 1)1, (15)

X=(n p?/3T)[S(S+1) = (2n/3)n %S In®( v, S/ T, (16)

p=p, +p (11— nml3as), P = 4mﬂ2an°S(S +1)/nee2,
agma(E5+ (S + )7 (1,5 7/ TI%). (17)

Formulas of the type of (15) and (16) were obtained in'*' for another system, but also
with an exponential interaction.

At T>T, we have r(T')</ and we obtain the formulas of*' for the RKKY
interaction.

To study the vicinity of the transition we can use the percolation approach. This
is exactly the procedure used by Smith,"’ but he considered the RKKY interaction, for
which this approach is not valid. We shall assume that the spins do not interact at
distances larger than #(T") (see(13)), but interact strongly at shorter distances and are
rigidly coupled. We arrive at the so called problem of spheres, in which the condition
for the formation of an infinite cluster is (see'’)
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p=Fe, (18)
B=§—”r3(_T)nm,

A numerical calculation yields 8, =34-0.1. From (13) and (18) we obtain for @ the
formula (12).

Smith'™ replaced the sphere problem by the Bethe-lattice problem, a procedure
that is generally speaking not a neutral operation. This enabled him to obtain @ (T") in
the form of a curve with a kink at T=@. In particular, at 7> @ it was found that

nmpZS 2
3T

It can be stated that this formula is valid also for the true sphere problem close enough
to the transition point.

X = . (19)

The heat capacity at @ has in practice no singularities. This follows from the fact
that contributions to the heat capacity is made only by bonds of the type T(@®), and
these are due mainly to peripheral spins that join the clusters. The singular part of the
heat capacity is due to bonds that must become closed in order to form an infinite
cluster. The number of such bonds is inversely proportional to the cluster dimension,
which is of the order of |B— B |y, where $=1.694-0.3."" This yields for the heat
capacity a singular part of the order of

-6

sing 7V —_@—_ )y( nml/al )-'ynm (20)

This part vanishes together with its derivative at T=0©, and at T—@ > @ it is small in
comparison with the nonsingular part obtained above.

For the same reasons, p(T") has likewise no singularities.
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