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We consider phase transitions with formation of an exciton condensate in
two-dimensional electron-hole systems in strong transverse magnetic fields.
The phase diagram of the system is constructed for densities at which only
the lower Landau level is filled, when the particle motion is “zero-
dimensional.”

PACS numbers: 71.35.4-z

1. We predict in this paper phase transitions with formation of an exciton conden-
sate in quasi-two-dimensional electron-hole (e-h) systems (quantized films, layered
semiconductors, etc.) in strong transverse magnetic fields H. The properties of the
obtained excitonic phase differ qualitatively from the properties of those investigated
in three-dimensional e~4 systems in strong H."™ The phase diagram of the system is
calculated at r ,, =(c/eH )"*<€a,(a,=min{a ,,a ,), a ., are the effective Bohr radii of e
and &, and #=1) and at a density n S 1/2r 2, —when all the particles are at the lower
Landau level and their motion is effectively zero-dimensional. The phase diagram
consists of regions I and ITI-tenuous and dense e~/ plasma-and an exciton phase in
region II (Fig. 1). The transitons I-II and I-III are of second order. In the zeroth
order in 7 i /a o, the thermodynamic characteristics of the exciton phase coincide with
the characteristics of a state made up of an e-4 liquid drop and e-A gas," which are
calculated with Maxwell’s rule taken into account. Therefore the transition of a ten-
uous e~# gas (I) into a continuous e—# liquid (III) can be treated as a first-order
transition or as two successive second-order transitions. The situation is analogous to
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FIG. 1.

ideal Bose-gas condensation, which can be regarded either as a second-order phase
transition'’ or as first-order transition.'” The physical meaning of this analogy lies in
the fact that the multipole moments of the “zero-dimensional” excitons are equal to
zero (see below), and the interaction between them appears only when corrections
~r y/4a, are taken into account. Nonetheless, these phases are microscopically differ-
ent, and allowance for the corrections makes the thermodynamic properties also
different.

2. In the problem of one two-dimensional exciton in a magnetic field at r ; <a,,
the Coulomb interaction can be regarded as a perturbation (it is important that, in
contrast to the three-dimensional case, the spectrum of the unperturbed particles is
exclusively discrete here). The Coulomb interaction (in the c.m.s.) is diagonal in the
angular quantum number m, i.e., it does not lift the degeneracy in m. Therefore, the
binding energy of the exciton is determined in first order in the interaction and is equal
to E,=(7/2)"?¢*/€r ;4 (in the three-dimensional anisotropic case the exciton binding

energy is also ~\/H ) and coincides with the binding energy of the quasi-zero-
dimensional e-% liquid.'” At the lower Landau level there are no excited exciton states,
which can be due only to transitions to the next levels. The wave functions of the
ground states of the particles do not depend on their masses in the zeroth order in
r g/a,. Therefore the multipole moments of the exciton are equal to zero, and the
interaction between the excitons appears only in the next orders in r 5 /a,. We note
that at 7540, in the low-density limit, the incoherent excitons disintegrate (the analog
of the Saha law).

3. The transition to the exciton phase is described by an analog of the Gor’kov
equations, since the non-ladder diagrams are small of the order of (7 y/a,)". From

these equations we obtain in the usual manner an equation for the order parameter 4,
connected with pairing at the lower level:
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Here £ ,=nw z+€,—u, @ is the cyclotron frequency, € , =2E,71, v are the ob-
tained renormalizations of the Landau levels, v=I/mn rZ is the specific two-dimen-
sional volume in 72, units, u is the chemical potential, I,=1, and I, =(2n— )l/2n)\!.
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The terms with n>1 in (1) make a contribution that is small in 7 5 /a,. From (1) we
obtain the dependence of the transition temperature 7', on v:"

T, =E, (1-4/9)/2k(v/2 = 1), )

which has a maximum 7T _,,=FE./4 at v=4. At a given temperature T < E,/4 two
first-order transitions take place in the system: at v=v,(T) from the tenuous e-h
plasma (region I in Fig. 1) into the exciton state (region II), and at v=uv,(T") from the
exciton phase into the condensed e~/ plasma (region III) (v, ,(T) are the critical
volumes determined from (2), and 1/v,+ 1/v,=1). At T=0, in the zero-density level,
the state of the system (just as in the three-dimensional case'™) is that of an exciton
condensate, since v,(0)= 0. The free energy of the system at T< T, (i.e., in the region
II), is

F(v, T) = (v/v(T ) JF (v, T )= E,(1 = v/v,(T)), ®)

where F,, is the free energy of the e-h plasma (see'’). In this region we have
(dP/3v) =0 (Pis the pressure). The isotherms P -(v) of the exciton phase, shown by
the thin lines in Fig. 1, coincide exactly with the isotherms of the e~ plasma, linear-
ized in accordance with Maxwell’s rule in the liquid—gas region (which coincides with
the region II). Region II can therefore be regarded either as a region where some of the
¢ and 4 dropped out into the exciton condensate between the second-order phase-
transition points, or as a region of liquid—gas coexistence on the line of the v,(T" )}-v,(T")
first-order transition. The isotherms coincide because there is no interaction (accurate
to r ;/a,) between the excitons, so that the e~h liquid can be regarded as a result of
“sticking together” of the excitons.

4. Despite the equality of the thermodynamic characteristics, the single-phase
exciton state and the two-phase drop state are, obviously, microscopically different, a
fact reflected, for example, in the spectra of the elementary excitations. Allowance for
corrections in r ;/a, eliminates also the thermodynamic equivalence of these states.
Thus, when the corrections are taken into account we have in the exciton state
(dP/3v) <O (the isotherms of the exciton state with allowance for the corrections
are shown dashed in the figure). At low density (v~uv,(T)) the exciton phase is en-
ergywise favored, whereas at v~ v,(T) the two-phase drop state is favored. The energy
difference in this case is merely S0.1(r ;,/a,)E,, so that one cannot exclude the possi-
bility that effects not accounted-for here (impurities, surface, etc.) can, without hardly
changing each of the states, move them more substantially apart.

We note in conclusion that the exciton state can be distinguished from the drop
state by means of the cyclotron-resonance spectra. In the drop state two lines appear
(at m ,=m ), corresponding to the liquid and the gas, shifted by an amount E,v ;5
from w ,, while in the homogeneous excitonic state we have one line shifted by an
amount ~E,.

’Analogous results for the critical temperature of the exciton pairing in a system with spatially separated ¢
and A were obtained independently in™'. We thank the authors for their preprint.
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