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A simple model is used to consider the critical behavior of crystals with
two antiferromagnetic subsysterhs, and an explanation is proposed for the
recently observed effect of the “splitting” of the critical exponent 8. This
splitting is due to specific corrections that must be introduced into the
scaling because of the presence of an interaction bilinear in the
fluctuations between the antiferromagnetic subsystems.

PACS numbers: 75.30.Kz, 75.40.Bw, 75.30.Cr

It is known that a large number of antiferromagnets (AFM) have in the ordered
phase four pairwise collinear (or almost collinear) magnetic sublattices. These include
iron orthoborate Fe;BO;, in whose structure it is possible to separate below the Néel
temperature T ,, =508 K two pairs of magnetic sublattices made up of iron ions.""” The
Mossbauer effect was recently used™ to measure in this crystal the local magnetic
ficlds at the nuclei of the iron ions in the critical temperature region."” It turned out
that the temperature dependences of the magnetizations of different sublattices, deter-
mined in this manner, possess an unexpected singularity: the critical exponents of the
magnetization of the sublattices of one pair differ somewhat from the exponents of the
magnetization of the sublattices of the other pair, whereas the temperautres at which
the AFM order sets in are the same for the two pairs, within the limits of experimental
accuracy (for details see'?’). In the present communication we consider, with a simple
model of an example, the static critical behavior of AFM of the indicated type and
propose, in particular, an explanation of the “splitting” of the critical exponent /3, an
effect observed in'?.

Let ¢ ;(x) be the field of the fluctuations of the AFM-ordering parameter of the
ith pair of sublattices, with /=1 and 2. We assume the fields ¢ ; to be scalar, i.e.,, that
our AFM is effectively uniaxial with respect to both pairs of sublattices; it appears that
this is exactly the situation realized in Fe;BO,. The fact that the condensate-formation
tempreatures coincide for the fields ¢, and ¢, points to the presence of a coupling
between these fields, and furthermore such that the corresponding Hamiltonian of the
interaction contains a term bilinear in ¢, and ¢,. Thus, the effective Hamiltonian of the
critical-fluctuation field takes in this case the form

4
H=fdx[{yo )2 (V) +r ¢2+r,82 +1d,6,+ 3 y,éfe) "l
k=o
8]

Here r, and r, are certain smooth monotonically increasing functions of the tempera-
ture and go through zero at the points T} and T}, respectively, and ¥, are the bare
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coupling constants. In the Landau theory, T) and T play the role of phase-
transition points for each pair of sublattices separately, i.e., in the absence of an inter-
action of the type A¢,@,.

To bring to light the manner in which this interaction influences the character of
the phase transition, we diagonalize the harmonic part of the Hamiltonian (1). After a
suitable orthogonal transformation, the Hamiltonian (1) takes the form

4
H=dx [(yg)2+(yO2+r g2+ R EI+ T ylyhet-F], )
- k=0
where
— 1 N
¢=a¢1—b¢2v f=b¢1+a¢>2,a=\/l—b = 1+ e
\/2 \/(,2_,1)2+)\2
I 3
ro=—2—[r1+r2—\/(r2-r1)2+?\2]. R, =r +ry=r_. (CY)

The bare “masses” r, and R, just like r; and r,, increase monotonically with tempera-
ture. We denote by T’ and 7' the points at which they vanish. It is easily seen that
TY >max(TQ,TH) and T <min( TY,TH3) . We are interested in the vicinity
of the point TQ [r TP )=0] where the field ¢ fluctuates strongly and can form a
condensate!’ at a certain temperature T , =T, while the field £ is noncritical, with
{&>=0. It follows from (3), at <y¥>=~0 and {£>=0 both AFM ordering parameters
{¢,> and {¢,) are simultaneously different from zero. Thus, the two pairs of sublat-
tices do indeed go over into the AFM state at the same temperature 7T .

The fact that the field £(x) is not critical near T, does not make it possible,
generally speaking, to neglect immediately the £-containing terms in the Hamiltonian
(2). The point is that the interaction between the critical and the weakly fluctuating
fields may turn out to be substantial in the critical region and lead, for example, to a
transformation of the continuous phase transition into a first-order transition.”’ We,
however, will assume that the “crossing” coupling constants in (2) are small enough
and that there exists a wide range of temperatures where the critical behavior of the
system is determined exclusively by the self-action of the field ¢. In this temperature
interval, the effective Hamiltonian of the crystal can be taken in the form (2) with
£=0, while the order <y, the susceptibility y ,, and other quantities as functions of
7=|T— T 5 |/T y are given by the usual power-law expressions

< ¢g> NTB, X(// ~ 77, 5

We obtain next the temperature dependences of the magnetizations of the sublat-
tices {¢,> and <¢,) of the two AFM subsystems. From (3) under the condition <{>=0
we obtain immediately

< ¢ >=a<gsvarB, < g,>==-b<y>~ brh 6)
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The coefficients a and b, as seen from (3), vary with temperature, so that {¢,> and {¢,)
are not strictly power-law functions of r. Within the limits of the critical region,
however, where 7 runs through the values from 7, €1 and 7, <7, the quantities ¢ and b,
being smooth functions of the temperature, should vary insignificantly. As a result, the
products a(7)7? and b (7)7#, will behave over a certain finite (and small) interval of
variation of the argument (r,,7,) like power-law functions of 7, but with exponents
slightly different from 3:

L4

afr JoB =a Bl b )eB b, B 7

Since a?+b*=1, the signs of the increments a and b are always positive and conse-
quently sign(5'—f )= —sign(B" —pF).

Thus, the critical exponent £ splits, as it were, into two effective exponents 5’ and
", which characterize the temperature dependence of the magnetization of the sublat-
tices of the two AFM subsystems. Let us estimate numerically the magnitude of this
splitting, assuming, as in""', 7,=0.1 and 7,=10". Since (7, —7,)<€1, we can linearize the
radical in (3) and represent g and b in the form

a = + b =~ - N (8)
2 V1+4 2 V1= 4

where the numbers 4 and B are expressed in elementary fashion in terms of the
parameters of the model. At T /T3 ~A~1 we have 4 ~B~1; we assume for the
sake of argument 4 =B=1. Then, using the relation

[agr) b(r,)
gl ] e ©
b./rl)a(rz) T2

we obtain ' —B" =0.05. In the Fe,BO, crystal we have ' —f" =0.045."

Thus, the considered splitting mechanism of the critical exponents ensures the

”

required order of magnitude of the difference 8 —S".

The described effect is obviously not restricted to AFM with two pairs of magnet-
ic sublattices. Corrections to scaling and “splitting” of critical exponents should be
observed also in other substances having several ordered subsystems that are coupled
with one another. Calculation of the effective exponent y . shows that the splitting
may be accompanied also by a shift of the effective value of the exponent relative to the
true value, as a result of subsystem interactions that are bilinear in the fluctuations.

I am grateful to V.A. Bokov and A.S. Kamzin for acquainting me with the
experimental situation, to G.A. Smolenskii for interest in the work, and to S.A.
Ktitorov and B.N. Shalaev for a discussion of its results.
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"The difference between T, and T'% is due to the interaction of the fluctuations.
————
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