The 20-plet of vector mesons

V. V. Khrushchev

Institute of High Energy Physics, USSR Academy of Sciences (Submitted 29 March 1978)
Pis'ma Zh. Eksp. Teor. Fiz. 27, No. 9, 537-538 (5 May 1978)

It is assumed that the two resonances in the e^+e^- channel from the mass interval 3.68–4.42 GeV can be identified with two mesons from the SU(4) 20-plet. The ratios of the widths of the decay of these mesons to e^+e^- and the quantum numbers of the members of the 20-plet are obtained.

PACS numbers: 11.30.Kx, 12.40.Cc, 13.20.Jf, 14.40.Pe

It is known that the properties of the recently discovered heavy mesons such as J/ψ , ψ' , and κ are well described by the quark model if a fourth charmed quark is used.⁽¹⁾ In this model ψ' is usually treated as a radial excitation of ψ , which likewise does not contradict the existing data.^(1,2)

However, a complex structure of peaks, including the ψ' meson, has been observed in the mass interval $M \sim 3.68-4.42$ GeV, and some of these peaks can be subsequent radial excitations of the ψ meson, or/and bound states of charmed mesons.^[2,3]

In this article we set in correspondence two peaks from this region with the mesons C_0^0 and $C_1^0(I_3=0)$ from the 20-dimensional SU(4) multiplet. An important requirement for an unambiguous identification of C_0^0 and C_1^0 with the obtained resonances is that the isospins of C_0^0 and C_1^0 differ by unity. The critical fact for the experimental confirmation of the existence of the 20-dimensional SU(4) multiplet of mesons would be the observation of charmed mesons with unity isospin. Such mesons, called G-mesons, cannot be obtained within the framework of the ordinary SU(4) quark model.

We consider in greater detail the properties of the mesons belonging to the 20-dimensional multiplet. It is easy to determine the quantum numbers of these mesons. We write them out and omit in some cases the antiparticles. C, S, I, and Q denote respectively the values of the charm, strangeness, isospin, and charge.

TABLE I. The C^0 , C^0_1 , C^0_0 and \bar{C}^0 mesons form an SU(3) octet.

	C	S	1	Q
G mesons	1	1	1	(2,1,0)
C ⁺ mesons	1	0	1/2	(1,0)
$C_{\mathbf{o}}^{+}$ meson	1	-1	0	0
C o mesons	0	1	1/2	(1,0)
C_1^{o} mesons	0	0	1	(1,0,-1)
Co meson	0	0	0	0

In contrast to the main 15-plet, the masses of the mesons belonging to the 20-plet cannot be determined uniquely. However, one should expect the splitting with respect to the masses of the C mesons from the SU(3) octet to be much less than the splitting obtained in the model with radial excitations. The maximum mass difference for the mesons from the 20-plet is most likely not larger than 1 GeV.

We calculate now the ratio of the widths $\Gamma(C_0^0 \to e^+e^-)$ and $\Gamma(C_1^0(I_3=0) \to e^+e^-)$, using the remark made by Yennie^[4] that these ratios are independent of mass for the family of the known vector mesons. Recognizing that C_0^0 and C_1^0 mesons belong to the SU(3) octet, we obtain $\Gamma(C_1^0(I_3=0) \to e^+e^-): \Gamma(C_0^0 \to e^+e^-) \approx 3:1$.

In conclusion, the author thanks G.G. Volkov, Yu.M. Zinov'ev, A.K. Likhoded, Yu.G. Stroganov, and F.F. Tikhonin for useful discussions.

¹G.J. Feldman and M.L. Perl, Phys. Rep. C 33, 286 (1977).

²J.S. Kang and H.J. Schnitzer, Phys. Rev. D 12, 841 (1975).

³L.B. Okun' and M.B. Voloshin, Pis'ma Zh. Eksp. Teor. Fiz. 23, 369 (1976) [JETP Lett. 23, 333 (1976)].

⁴D.R. Yennie, Phys. Rev. Lett. 34, 239 (1975).