One-dimensional collapse of plasma waves
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It is shown, with upper-hybrid quasipotential plasma waves as an example,
that one-dimensional collapse of oscillations takes place in systems
described by a Schrddinger equation with nonlocal nonlinearity.

PACS numbers: 52.35.Mw

This paper deals with the singularities of the self-action of quasimonochromatic
oscillations in one-dimensional physical systems described by a modified nonlinear
Schrodinger equation of the type

-+ — +ae}e12—ﬁe =0. M

This equation differs from the well known Schrddinger equation with local nonlinear-
ity (8=0) in the presence of one-dimensional collapse—an effect wherein the analytic
solutions are “destroyed” by the onset of a singularity after a finite time.

Equation (1) is valid, in particular, for packets of Langmuir oscillations in an
isotropic plasma, which move with supersonic velocity for different types of high-
frequency quasipotential waves (hybrid and cyclotron) propagating in a magnetized
low-pressure plasma perpendicular to the constant magnetic field, and also for exci-
tons in one-dimensional lattices (the latter is shown in'"").

We illustrate the procedure of obtaining Eq. (1) using as an example upper-hybrid
quasipotential oscillations. We represent the equation for the complex amplitude of the
electric field of the wave
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in a coordinate system connected with the group velocity u, in the form
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Here n and A are slow (in the scale of 27/w,) relative perturbations of the electron
density and of the magnetic field, and are produced under the influence of the Miller
forces; w,, and wy,, are the Langmuir and electron cyclotron frequencies, respectively;
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Equation (2) is considered in the region of the normal dispersion of the oscillations
(&%, > 30},) with the condition L 2>r%, (ry, is the cyclotron radius of the electrons)
satisfied by the spatial scale L of the field amplitude.
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Their dependence of small perturbations (n<1, #<1) on the amplitude E can be
described by the linearized system of equations of two-fluid hydrodynamics of a colli-
sionless plasma, supplemented by the Miller force. If u’€v %, 720 g, @ y;>1 (7 is the
time scale in the group-velocity frame), then it is easily found that
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In dimensionless variables, (2) and (3) reduce to Eq. (1) with a=1 and 8=1.

We consider first stationary solutions of (1) in the form e=€(¢) exp(—id*7), using
as an example the case =1, b=1." It is easy to show that for the integral curves on
the (¢, de/df ) phase plane we obtain the equation

de >2 A% 1 -€¥/24% )+ C
a¢
where C is the integration constant. For isolated solutions (solitons), which corre-
spond to C=0, we can write the analytic expression
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Analysis of the integral curves shows that at 4> 1/2 the derivative of the solitons has a
singularity at £=0 (“sharply pointed” solitons).”’ At 4«1/2 the contribution of the
nonlocal nonlinearity can be neglected:

(&) =v2 A ch~l(Ag ). : (6)
At A>»1/2 we have for the “sharply pointed” solitons®’
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Solitary analytic solutions satisfy a known criterion," according to which these
solutions are stable if the condition
dw
-, >0 )
dA
is satisfied, where W,=f €%(§ ) d£ is the total energy of the soliton. The expression for
Wy(4) is of the form
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According to the plot of Wy(4 ) shown in Fig. 1, there exists a limiting value of the

amplitude \/ 2 4, (4,=0.415), and this value separates the stable solutions 4 < A4,
from the unstable analytic solutions. The “sharply pointed” solitons should also be
unstable.”’

In the investigation of the dynamics of arbitrary initial distributions we can use
the integrals of Eq. (1)—the conservation laws for the number of quanta and for the
Hamiltonian of the system:

I = [leld¢, (10)
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From (1), (10), and (11) follows the integral relation:
d? ‘ , a| e|2. 2
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For =1 and a = —1 the evolution of any distribution with 7, <0 leads to the onset of
a singularity due to the sharpening of the e(¢) profile. At @ =1, the local nonlinearity
hinders the formation of singularities of the solution. But if the term with the local
nonlinearity is negligible in the initial distribution, then it becomes possible to con-
struct self-similar “collapsing™ solutions.
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To this end, we represent e in the form e=a exp(—i¢ ) and consider the system of
equations for the real amplitude and the real phase:
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We seek the solution of (13) and (14) in the geometrical-optics approximation, i.e.,
neglecting the term [1/a(d%a/d€?)], and without taking into account the locally nonlin-
ear term @® The resultant system has self-similar solutions that take for v=a? and
u=0¢/d¢ the form:
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The corresponding approximation of the self-similar distribution is a fourth-order
parabola:

(2 =%H% g 1, .
o= 7= — (16)
0 , T> 1,5 (200)

It is important that the obtained self-similar solution conserves the total energy in the
“collapse,” and the terms discarded in (14), including the diffraction term (d%a/d&?),
remain small up to the instant 7=7, of formation of the singularity. It is obvious that
in a real system the “collapse” should lead to the appearance of dissipation.

Thus, collapse of one-dimensional distributions of high-frequency plasma oscilla-
tions is possible under the action of nonlocal nonlinearity. This conclusion is valid, in
particular, for packets of Langmuir oscillations in an isotropic plasma, which move
with supersonic velocity, and for which the onset of nonlocal nonlinearity (¢=—1,
fB=1) is connected with violation of the quasineutrality of the perturbations of the
density of the electrons and ions under the influence of the ponderomotive force.

VStationary solutions of the system (2), (3) were considered in' for the particular case of a strongly nonlocal
nonlinearity Lg<L,.

2'It is obvious that this singularity does not appear when account is taken of the viscosity or of the nonlinear
dissipation.

Tt is impossible to prove (8) rigorously for solutions with singularities, but it can be regarded as the
asymptotic limit of the solution as 4—1/2.

'A. Nakamura, J. Phys. Soc. Jpn. 42, 1824 (1977).
M. Porcolab and M.V. Goldman, Phys. Fluids 19, 872 (1976).
3A.A. Kolokolov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 17, 1332 (1974).

520 JETP Lett., Vol. 27, No. 10, 20 May 1978 A.G. Litvak and A.M. Sergeev 520



