Three-dimensional solitons in Hell
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It is shown that three-dimensional stationary wave packets—solitons—can
propagate in He II in the case of positive dispersion. A numerical solution
of the equation that describes these packets is obtained, and the
corresponding branch of the excitation spectrum is calculated. The
question of excitation of a soliton by an electromagnetic wave is
considered.

PACS numbers: 67.40.Pm

According to the experimental data on sound damping,"-* the phonon part of the
He IT spectrum has positive dispersion at low pressures.

The nonlinearity of the medium may stop the spreading of the waves under the
influence of the dispersion. In the one-dimensional case, the nonlinear equations of the
hydrodynamics of Hell at 7=0 reduce, at any sign of the dispersion, to the
Korteweg—de Vries equation. Therefore one-dimensional solitons always exist in
He I1. We shall show below that at positive dispersion there can exist in the He II
three-dimensional axially-symmetrical solitons that propagate with a velocity lower
than that of sound. The opposite case is impossible because of the phonon emission.

We confine ourselves henceforth to the hydrodynamic approximation, and con-
sider the case T'=0. The hydrodynamic equations can be written in Hamiltonian form
if we choose the canonical variables to be the density p and the velocity potential ¢.
Taking into account the cubic anharmonicity and dispersion, we write down the Ha-
miltonian in the form
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where p, is the equilibrium density, p’ is the deviation of the density from the equilibri-
um value, ¢ is the speed of sound, and 8=[2d Inc/d Inp—1]. This Hamiltonian leads
to the dispersion law w=ck (1+yk?).

We seek the solution in the form of an axially-symmetrical packet propagating
along the x axis, so that the x-component of the velocity of the liquid takes the form
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In the lowest order in b € 1, which corresponds to soliton dimensions much larger
than atomic, the hydrodynamic equations reduce to the equation
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(This equation corresponds to the Kadomtsev—Petviashvili equation.) Thus, the soli-
ton comprises a perturbation with a characteristic transverse dimension \/27// b
much larger than the longitudinal \/27// V.

Equation (4) was solved numerically by a method proposed by Petviashvili for an
analogous two-dimensional equation,”’ the only difference being that a difference
equation with respect to the variable 77 was solved instead of a Fourier transformation.
The isolines of the function f; which is even in the variable £, are shown in Fig. 1.
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FIG. 1. Isolines of the function f(£,77). At the
origin, f has a maximum equal to 12.2, and at
the points (7=0,£{=+-1.4) it has a minimum
equal to —3.1.

The existence of such a solution determines an additional branch in the spectrum
of the excitations of He II. Knowledge of the function f makes it possible to calculate
the energy and the momentum of the soliton as functions of its velocity. The expres-
sion for the soliton momentum

,@:,@x =-fd3r(po+p')ux (5)

diverges formally, since the function f has an asymptotic form of dipole character at
infinity. This divergence can be eliminated by assuming that the soliton accelerates
slowly and begins to increase at an instant of time f,. At the instant ¢, at the distances
R > c(t—1,) from the start of the acceleration, the velocity of the liquid is determined
by the initial form of the soliton. Since the integral of the linear term in & reduces to
an integral over the surface, this term makes no contribution to the change of the
momentum.
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To determine the soliton energy E as a function of the momentum, it is necessary
to eliminate the soliton velocity, using the relation v=JdE/Jd% . The dispersion law at
large momenta, accurate to terms proportional to 1/2?, is of the form

26 2, 3 )’3 5 s
E(P) = ¢, P+ —=2—3- 1% +-const, I= 27 [f°(, n)d&ndn. (6)
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Numerical integration yields a value 7=231. Expression (6) contains the integration
constant, which cannot be calculated theoretically. One can only expect its value not
to exceed, in order of magnitude, the characteristic atomic energy. Figure 2 shows a
plot of E (Z) with a value zero for the constant. The values ¢,=2.383 < 10* cm/sec and
[3=4.68 were taken from'”, from which the value y=_8x 107 cm” at zero pressure was
also taken.
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FIG. 2. Soliton spectrum continued arbitrarily into the region where the hydrodynamic approximation is
violated. The spectrum of single-particle excitations of the He II is shown for the sake of clarity.

The soliton is a multiparticle excitation of large dimensions with a large lifetime.
We consider the possibility of exciting a soliton by an electromagnetic wave, confining
ourselves to the case of light incident along the x axis, and assume that the wavelength
of the light is larger than the longitudinal dimension of the soliton. The excitation
mechanism consists of scattering by the inhomogeneity brought about the the soliton.
The angular dependence of the scattering amplitude can be calculated in the Born
approximation, and the dipole singularity at large distances causes the main contribu-
tion to the transport cross section to be made by backscattering at angles 7— 8 b 2
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Using the form of the singularity f at large distances, we can calculate the main
contribution to the transport cross section.

Assuming that the parameters of the soliton vary slowly and that it preserves its
form, we obtain, equating the momentum lost by the light in scattering per unit time to
the change of the soliton momentum
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where E, is the electric-field amplitude, q is the wave vector of the incident wave of
light, and € is the permittivity. The equation (7) remains valid until the soliton longitu-

dinal dimension becomes comparable with the light wavelength.

In the transparency region we have p(d¢/dp) ~0.05, and consequently at |g|= 10°
cm™ and at a radiation intensity 10° W/cm? the coefficient of 5'? in the right-hand
side of (7) is of the order of 107 sec™. Thus, an attempt to excite solitons with light in
the transparency region would seem ineffective. It should be noted that when the
frequency of the light is increased the excitation conditions should improve because of
the increase of e.

It is possible that more favorable conditions for the excitation of such solitons
exists in other inert gases, since it appears that the superfluid properties of He II are
not very significant. At the present time, however, we know the sign of ¥ only for
He II.
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