Decay of a charmed meson into a heavy lepton, and the mass of the ν neutrino

M. P. Rekalo

Physicotechnical Institute, Ukrainian Academy of Sciences (Submitted 27 March 1978)
Pis'ma Zh. Eksp. Teor. Fiz. 27, No. 10, 588-590 (20 May 1978)

The probabilities of the decay of the pseudoscalar charmed F and D mesons into a heavy lepton, $F^- \rightarrow \tau^- + \bar{\nu}_{\tau}$ and $D^- \rightarrow \tau^- + \bar{\nu}_{\tau}$ are estimated under the assumption that the mass of the ν_{τ} neutrino is less than 220 and 58 MeV, respectively. At almost all values of $m(\nu_{\tau})$ (up to 219.5 MeV) the probability of the $F \rightarrow \tau + \nu_{\tau}$ decay exceeds the probability of the $F \rightarrow \mu + \mu_{\nu}$ decay. The branching ratio $W(F^+ \rightarrow \tau^+ \nu_{\tau})/W(F^+ \rightarrow \mu^+ \nu_{\mu})$ is determined only by the mass of the ν_{τ} neutrino and is sensitive to this mass.

PACS numbers: 13.20.Jf, 14.40.Pe, 14.60.Gh

This article discusses a number of interesting properties of leptonic decays of the charmed charged pseudoscalar mesons D and F. Since the masses of these mesons $(m_F=2.03~{\rm GeV^{(1)}}$ and $m_D=1.865~{\rm GeV^{(2)}})$ exceed the mass of the heavy τ lepton, which was measured with good accuracy in colliding electron-positron beams $(m_\tau=1.807~{\rm GeV})$, and decays into the τ lepton and the corresponding neutrino

$$F^{\pm} \rightarrow \tau^{\pm} + \nu_{\tau}(\overline{\nu_{\tau}}), \qquad D^{\pm} \rightarrow \tau^{\pm} + \nu_{\tau}(\overline{\nu_{\tau}}), \qquad (1)$$

become allowed for the D and F mesons. In the standard scheme⁽⁴⁾ of weak interaction with four quarks (u, d, s, and c), the F-meson decay, unlike the D-meson decay, is not subject to the Cabibbo suppression.

Naturally, the decays (1) can take place only at definite values of the mass of the ν_{τ} neutrino, namely $m_{\nu} < 220$ MeV for the $F \rightarrow \tau + \nu_{\tau}$ decay and $m_{\nu} < 68$ MeV for the $D \rightarrow \tau + \nu_{\tau}$ decay. We note that the estimate $m_{\nu} < 540$ MeV obtained in experiments with colliding electron-positron beams for the mass of the ν_{τ} neutrino^[5] exceeds the required values of m_{ν} . Yet an astrophysical estimate^[6] gives for the neutrino mass the much smaller value $m_{\nu} > 30$ eV.

Therefore the very observation of the decays (1) would make it possible to improve by severalfold the estimate of the mass of the ν_{τ} neutrino. It is also easy to verify that owing to the proximity of the τ lepton mass to the masses of the D and F mesons the probabilities of the decays (1) are sensitive to the value of the ν_{τ} neutrino mass. Indeed, the probability of the decay $P \to \tau + \nu_{\tau}$ (P stands for F or D) is determined by the following formula (with allowance for the neutrino mass)

$$w(P \to \tau + \nu_{\tau}) = \left| \mathbf{k} \left(G^2 \frac{f_p^2}{4\pi} \frac{M^2 (m_{\tau}^2 + m_{\nu}^2) - (m_{\tau}^2 - m_{\nu}^2)^2}{M^2} \right) \right|$$
 (2)

where G is the Fermi weak interaction constant, f_p is the constant of the $P \rightarrow \tau + v_{\tau}$

decay, M, m_{τ} and m_{ν} are the masses of the P meson, the τ lepton, and the ν_{τ} neutrino, and k is the 3-momentum of the τ lepton. This formula is valid both for the V-A and for the V+A variant of the weak charged current describing the transition $\nu_{\tau} \to \tau$.

The branching ratio $R_n = u(P \to \tau \ v_{\tau})/u(P \to \mu \ v_{\mu})$ is determined only by the mass of the v_r neutrino, and there is a noticable dependence of R_n on the mass m_v . It is seen from Table I that, as expected, the greatest sensitivity of the ratio R_E to the value of m_v takes place near $m_v = 220$ MeV (we have assumed $m_E = 2.03$ and $m_x = 1.81$ GeV).

TABLE I.

[™] ν, MeV	0	120	160	200	210	215	217	218	219	219,5	219.75
R_{F}	13,6	12,6	10,7	6.7	5,0	3,5	2,7	2.2	1.6	1,1	0,80

We note that R_F exceeds unity all the way to $m_v = 219.5$ MeV, i.e., to $m_F - m_{\tau} - m_{\nu} = 0.5$ MeV. For the D-meson decay $R_D = 1.15$ ($m_{\nu} = 0$), $1.20(m_v = 20 \text{ MeV}), 1.10(m_v = 30 \text{ MeV}), 0.94 (m_v = 40 \text{ MeV}), 0.67 (m_v = 50 \text{ MeV})$ and 0.46 (m_v =55 MeV), i.e., at zero neutrino mass the probability of the $F \rightarrow \mu + \nu$ exceeds the probability of the $D \rightarrow \mu + \nu$ decay (despite the small energy release in the former decay). We emphasize once more that these results are equally valid for both the V-A and the V+A variant of the current.

If account is taken of the possible dependence⁽⁷⁾ of the constant f_p on the masses of the quarks making up the P meson, then the two-particle decays (1) should be enhanced by $[(m_s + m_c)/(m_u + m_d)]^2 = 11$ and $[(m_u + m_c)/(m_u + m_d)]^2 = 9$ times, respectively, if we use for the effective masses of the quarks the values $m_u = m_d = 300 \text{ MeV}, m_s = 500 \text{ MeV} \text{ and } m_c = 1500 \text{ MeV}.$

We have thus shown that the $F \rightarrow \tau + \nu_{\tau}$ decay should be the principal leptonic decay of the F meson. The probability of the $D \to \tau + \nu_{\tau}$ decay is comparable with the probability of the $D \rightarrow \mu + \nu_{\mu}$ decay, but owing to the Cabibbo suppression the principal leptonic decays of the D^{\pm} mesons should be three-particle decays with production of K or K^* mesons.

We note in conclusion that the matrix element of the $F \to \tau^+ + \nu_e + \pi^0$ decay does not contain the Cabibbo suppression, but the probability of this decay should nevertheless be substantially suppressed (to the same degree that the probability of $\phi \to 3\pi$ is suppressed in comparison with the probability of the $\phi \to K\overline{K}$ decay).

¹DASP Collaboration, Preprint DESY 77/44, 1977.

²I. Peruzzi et al., Phys. Rev. Lett 37, 569 (1976).

³DASP Collaboration, Preprint DESY 77/81, 1977.

S.L. Glashow, J. Illiopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).

^{&#}x27;T.F. Walsh, Preprint DESY 77/76, 1977.

⁶M.I. Vysotskiĭ, A.D. Dolgov, and Ya.B. Zel'dovich, Pis'ma Zh. Eksp. Teor. Fiz. 26, 200 (1977) [JETP Lett.

S.S. Gershtein and M.Yu. Khlopov, Pis'ma Zh. Eksp. Teor. Fiz. 23, 374 (1976) [JETP Lett. 23, 338 (1976)].

- **26**, 188 (1977)].