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The dependence of the electron-hole drop temperature on the drop velocity
and on the lattice temperature is determined. It is shown that at subsonic
velocities the drop is heated at high lattice temperatures and cooled at low
lattice temperatures. At supersonic velocities, the drop is strongly heated.

PACS numbers: 71.35.+z

When an electron-hole drop moves under the influence of an external force, in
addition to the appearance of friction with the lattice, the equilibrium between the
phonon emission and absorption is shifted, as a result of which the drop temperature
T, can differ from the lattice temperature 7.'"' This question was investigated in" for
velocities v < s (s is the speed of sound). According to'” the temperature of a moving
drop always exceeds the lattice temperature and increases monotonically with increas-
ing v. We shall show that this conclusion is valid only at a sufficiently high lattice
temperature, when 7,/T=¢£ < 5.3, where kT,=2ps, and pj is the Fermi momentum.
At low lattice temperatures, however, when £ > 5.3, the moving drop is cooled. At
supersonic velocities the drop should be strongly heated.

The change of the internal drop energy E as a result of the emission and absorp-
tion of acoustic phonons is determined by the expression (for simplicitly we consider
interaction with only one type of carrier)
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where D is the deformation potential, p is the crystal density, /, is the distribution
function for the temperature 7, and N, is the equilibrium phonon distribution func-
tion for the lattice temperature 7. The character of the change of the temperature of
the moving drop can be explained in the following manner. Consider the quantity
dE/dt at T,=T < T It is obvious that heating of the drop corresponds to dE/dt >0
and cooling to dE/dt <0. At f=v/s <1 it follows from the energy conservation law

that ep—ep_q=s¢(1 —Bcosd) >0 (0 is the angle between g and v). Owing to the pres-
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ence of degeneracy we have ep—ep_q~kT, so that at S« 1 the momenta of the
emitted phonons are bounded: ¢ ~k7/s <€ p This limitation causes expression (1), as
well as the expression for the friction force,'” to be proportional to the small factor
(T/T,). With increasing velocity, the momenta of the phonons emitted at small angles
to the velocity direction increase, whereas the momenta of the absorbed phonons
remain as before at their thermal values. In view of the strong dependence of the
integrand of (1) on g(~g¢*), this leads to predominance of emission over absorption,
and consequently, to cooling of the drop. The reason for the cooling in the case of
T € T, is most obvious at S=1. In this case in the angle region & % T/T, the restric-
tion on the momentum of the emitted phonon is lifted so that g~ 2py. The limitation
on the interval of the angles & turns out to be less significant than the increase of g. At
supersonic velocities (8> 1, T € T;) the phonon emission turns out to be the predomi-
nant process, but it now leads not to cooling but to heating of the drop, inasmuch as
the most substantial are transitions with increase of the internal energy, when
Beosf> 1.V

The equation that follows from (1) at dE/dt=0 for the stationary temperature 7,
was obtained in'*:
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where x=7/T, By carrying out one integration we can recast (2) in a more conve-

nient form
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Let us determine the dependence of the drop temperature 7, on the lattice tempera-
ture 7 and on the drop velocity v in limiting cases. At £ € 1 and £, € | we expand the
function F in a series and obtain from (3) the expression

T, =T(1+pB%/3), )

At low velocities (B < 1), the change of the drop temperature is of the order of
B‘Z[l]:

T,=TI1+6(&p" L ©)

An explicit expression for the function G can be obtained by expanding the function F
in powers of 3 up to third-order terms. We then obtain G (£)=1,(¢)/I(£), where
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The function G (£) reverses sign at £=5.3, G(0)=1/3, G(x)=—1/3. Thus, at low
velocities and at T=0.19T, the heating of the drop gives way to cooling.

We turn now to the case of high velocities and low temperatures (§ > 1). At =1
Eq. (3) takes the form F (2£ ,& )=0. Using the asymptotic values of the integrals in (4),
we obtain for this case

T, = 3.8 T(T/T,)%, )

At sufficiently low temperatures T <0.147T,(¢ > 7) we have T, < T. The result (8) is
evidence that in principle deep cooling of the drop is possible at very low temperatures
and at = 1.

At supersonic velocities the drop is heated, and if T € T, then the drop tempera-
ture does not depend on the lattice temperature (in contrast to the case f < 1). From
(3) and (4) we get

]

T,=0,42 T, (B-1) at €7 << p-1 << 1 (92)

it

T, = (2/15) T B2 at B>> 1. (9b)

Figure 1 shows plots, obtained by numerically solving Eq. (3), of T, against S at
different lattice temperatures 7. Formula (5) agrees within 5% of with the exact
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FIG. 1. Dependence of the drop temperature T, on the drop velocity d at different lattice temperatures 7:
a—drop temperature in units of 7, b—the ratio T,/T. Values of the parameter §=T7/T,: 1-1, 2-3, 3-10, 4~
30; B=v/s.
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solution up to T'="T;. Formulas (9a) and (9b) are close to the exact solution at 5<2
and f>2, respectively.

For germanium, 7;,~ 13 K and the temperature at which the heating gives way to
cooling is =~2.5 K. At not too low temperatures, however, the changes in the drop
temperature at subsonic velocities are small. Thus, at T=1 K and v=s we should have
T,~0.7 K. On the contrary, at supersonic velocities the drop becomes strongly heated
and may evaporate.

We are grateful to V. M. Asnin for a useful discussion.

At B> 1, the drop, acting as a macroscopic body, begins to emit Cerenkov radiation of long-wave phonons.
This radiation must be taken into account when the deceleration force is determined, but it does not
change the internal energy of the drop and is of no importance for the determination of T, at a given
velocity v.
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