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It is shown that in the presence of colored sources (such as heavy quarks
and antiquarks) the gluon field becomes unstable and gluon condensation
sets in, analogous to pion condensation in an electric field. The possible
influence of this phenomenon on quark containment and hadron structure
is discussed.

PACS numbers: 12.40.Bb, 11.10.Ef

We assume for simplicity SU (2) symmetry and that there is no quark field—the
quarks are regarded as external sources having only the color degree of freedom.

The initial Lagrangian is thus
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where 7 “ are Pauli matrices acting on the color of quarks located at the points r ,:
a a a bgye
GLy = aFAV - 61./1’i + €00 A Ap .
Let immobile sources produce a sufficiently strong average field 4§ having a
third color component 4,=A4.0,;. Since color enters in the nonlinear terms of the
Yang-Mills equations in the form of vector products of colored vectors, the field 4,

does not enter in the equations for 42 and to explain the instability it is natural to
assume A > =0. We introduce in lieu of 4 ¢ the charged components 4 ¥ and 49,
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Simple algebraic manipulation then transform the Yang-Mills equation into:
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where po=2y ;. 7y «8(r—r ) and o is the frequency of the field 4 ;.

Equations (2) have a simple physical meaning. The second term in the right-hand
side of the second equation of (2) yields the change of the vacuum charge density in
the presence of the field 4,. The first equation coincides with the equation for a
charged vector boson in an electric potential 4,. To investigate the stability of this
equation we can use the methods developed in'"’ where the instability and the conden-
sation of the field of scalar charged bosons in an electric field was investigated.

Instability of gluon field. We shall verify that if the field 4, is large enough an
instability sets in, i.e., an exponential growth of the field 4 . To this end we discard
the nonlinear terms, multiply the second equation of (2) for 4,/ by (4 ;/)* and inte-
grate over space. We denote by

7 fahy*gatav
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the weighted mean value of the operator B. We obtain

o
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where p* is the mean value of the square of the momentum of the field 4 ;". It follows
from (3) that

= 2: +[A-: -;1.2 +p—2r/3.

When the condition A3 —A 2+ p* >0 is satisfied, the field 4 = becomes unsta-
ble. We shall show that this condition is satisfied in the case of a quark—antiquark
system at a sufficiently large distance R between the quarks. Indeed, in this case, as
can be readily seen, A,=0; the quark containment means that the potential 4, in-
creases without limit with increasing R, whereas p*~ 1/R2

Pion condensation. Since the instability gives rise to weakly inhomogeneous fields,
the problem reduces to obtaining effective macroscopic equations for the classical field
in a medium that is described by Yang-Mills equations.

Two types of linear effects determine the character of the equations of interest to
us. First are effects that can be obtained by perturbation theory in the nonlinear terms
of the “microscopic” Yang-Mills equations. These terms have a local character, i.e., ;
they depend on the field intensities and not on the potentials, and can be taken into ;
account by introducing into the Yang-Mills equations a dielectric constant €(G,,,) that
depends on (G, ) An analogous quantity for electrodynamics was introduced in™
and its form, accurate to second order in the effective interaction constant
8(G,)=g /e(G uv) > agrees with the well known expression of Weisskopf, Heisen-
berg, and Euler. In the case of the Yang-Mills equations, an expression for €(G ,,)
was obtained in”'. We shall use below not the detailed course of €(G,,,), but only the
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fact that €(G ,,) decreases at large distances from the charge and consequently pro-
duces anti-screening. The term (1/g3)G ., in the Lagrangian (1) is then replaced by
G f“,, as a result of which the nonlinear terms of Eqgs. (2) are multiplied by ¢, while
A4A4° is replaced by divesy4>%

A much more substantial source of nonlinearity is the gluon-field condensation
considered above, which is determined by the potentials 4, and 4 *.

In a quantum field-theoretical treatment of pion condensation in an electric field
the Lagrangian considered differed from that corresponding to Eq. (2) only in the
absence of the sign of n of the charged field and in the bringing out of the anharmonic
terms. Following this paper, we neglect the influence of all the remaining degrees of
freedom, other than the one corresponding to the condensate state. As shown in'", the
condensate stabilizes all the remaining degrees of freedom, and the change of their
zero-point oscillations in the field 4, exerts no substantial effect on the condensation
conditions.

The ground state corresponds to a condensate with frequency @ =0. The color
structure and the coordinate dependence of the condensate field 4 ¢ (r) are determined
from the equations in (2), in which we introduce €( G ,,) . Substitution of the matrix

uv
A% in general form in (2) yields in the quasiclassical approximation [i.e.,, when
(A+A43)4° is replaced by MA ¢, where M is a numerical function]

A"asﬁ,- A:=¢(")[‘118na +‘72‘,,a]’

where €, is a unit antisymmetrical tensor. With quasiclassical accuracy we have
P)gi+g)=A450).

In a quantum treatment it is necessary, in accord with', to replace g, and ¢, by
operators. For the condensate degrees of freedom we obtain the following
Hamiltonian:

~/
Prtpy*aiay +a%) AN
H = — + — (9] +q¢%) +4, 7.
2

The problem has been reduced to a two-dimensional anharmonic oscillator. The
condensate charge Z is an integer and is expressed in «erms of the third projection of
the oscillator moment in color space:

Z=2qp,— 9,0,
Here &*=4 2—A4 2+ p* <0, A=31fy*dV, and ¢ is defined by the equation

(qmqmqn) 01

Ay(r) + yineyy + A2 ¢ - 3=0, (6)

(qn)Ol
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Let ¥*(r) be normalized to unity, and then (g3+g¢3) has a large mean value that
increases with R, since A,~ 1/V, therefore

(qmqmqn')()l'=V< qmqm> (gn)Ol = fz(qn)OI'

As a result, Eq. (6) does not depend on n or on the choice of the states 0 and 1.
We can write down an equation also for the eigenstates of the continuous spectrum,
and these should go over outside the range of action of the field 4, into the zero-point
oscillations of the free gluon field. It is the condensate field which ensures the positive-
ness of »* (i.e., the stability). Accurate to small corrections (that do not contain R ), the
condensate energy is (see'’)

- Z2 ~2p2 AL
E=A°Z+——— + wg + lf »
2¢72 2 4

Minimizing the energy with respect to £ and Z, we get
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At 4,=0 the energy minimum corresponds to Z=0. Thus, the mean-squared conden-
sate field increases with R like 4 3, whereas the average field 4 2 ={g ,, >¥=0 is strict-
Iy equal to zero. We present also an expression for the density of the gluon charge

pr=d, <ATAL > == 24 Er). ®

Thus, the equation for A4, takes the form
vine VA, + A4 = Po/ -2Aofzx/12(r), )]

The solution of Egs. (6) and (9) together with the equations for the zero-point
oscillations in a condensate field makes it possible, we hope, to obtain theoretically the
properties of the hadron “bag” and, in particular to establish whether it is a string,

The instability of the gluon field is directly connected with the instanton oscilla-
tions of the vacuum. Indeed, consider a gluon-field fluctuation corresponding to for-
mation of positive and negative charges. At short distances between the charges, be-
sides the initial gluon field, only the field 4, is produced. However when the
fluctuations become large enough (when the charges move far enough apart) an insta-
bility sets in and an additional gluon field is produced. When the fluctuations die out
the system can go over into a state with G,,, =0, but the fields 4, and 4 ;, that differ
from zero, and this in fact corresponds to instanton fluctuations.
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