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Nondissipative hydrodynamics of rotating superfluid *He is considered.
Canonical variables are introduced, and the quantities describing the
systems are expressed in their terms. The Hamiltonian technique is used
to deduce the canonical equations of motion. A complete system of
nonlinear hydrodynamic equations is derived and the conservation laws are
obtained in explicit form.

PACS numbers: 67.40.Hf

It is known that in rotating superfluid *‘He the curl of the superfluid velocity is not
equal to zero, owing to the presence of the vortices. This makes it necessary to general-
ize the hydrodynamics of superfluid ‘He. Nonlinear hydrodynamics for this case was
considered on the basis of the conservation laws by Bekarevich and Khalatnikov.™
The equations, however, contained an indeterminacy due to the presence of a reactive
term in the equation for the superfluid velocity. This indeterminacy was eliminated by
comparison with the results of Hall and Vinen.”” In the present paper, on the basis of
the Hamiltonian formalism, we obtain the canonical equations of rotating superfiuid
‘He.

Both superfluid and normal motions exist in superfluid ‘He. Connected with them
are respectively the superfluid momentum density j and the relative normal momen-
tum density p; the latter is connected with the excitation and vanishes in the limit as
T—0. The total momentum density is

g =1+p. (D
By a Galilean transformation from the coordinate system in which v, =0, we obtain for

the energy density

E="“+(g‘PVs)Vs+f(P'P’S’“7)’ (2)

where p is the mass density, s is the entropy density, and @ is the local angular velocity
connected with the vortices. The differential of the energy density is given by
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v 4
dE = gdv, + vd(j = pv)+ (p+ -53..)va + Tds +‘7\§da_;'. )

where v is the normal velocity, T is the temperature, and g is the chemical potential.
The pressure is

P=(v—-v,,p)+pp +toX+sT—¢
Q)

The canonical equations of the hydrodynamics of superfluid *He were derived by
Pokrovskii and Khalatnikov."** To write out the Hamiltonian equations it is necessary
to know the structure of the Hamiltonian

H=[dsrH. ®)

The energy density E becomes equal to the density of the Hamiltonian H if all the
quantities on which it depends are expressed in terms of the canonical variables. In
particular, for non-rotating superfluid *He we have'**

j=-pya , p=-sVB-fVy. (6)

Here (p,a), (s,8) and (f,y) are pairs of canonically conjugate variables. The last pair
consists of the Clebsch variables, which are needed for the description of the indepen-
dent component of p.

It is seen from (6) that —%a plays the role of the superfluid velocity v'. In
rotating ‘He, where S7 X v'5£0, this expression must be modified. We start with the
analogy with superconductors, where the presence of the vortices is connected with
the presence of a magnetic field. Accordingly, we introduce for rotating ‘He a “vector
potential” a such that

v =~ §’a +a. @)
The analog of the magnetic field of superconductors is
7= [vxa=[Uxv]. ®

It is necessary also to introduce a variable d, which is canonically conjugate to a
and is the analog of the electric displacement vector. Connected with the vortices is a
momentum density determined by a “Poynting vector.” It is natural to include it in
the superfluid momentum density, since, in contrast to the excitation momentum, it
does not vanish in the limit as 7--0. Ultimately"’

i=pv -ldx@]. ©)

Now all the quantities on which E depends are expressed in terms of the canoni-
cal variables, and we can write down the canonical equations:
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It is necessary to add to the system (10-17) also the analog of Maxwell’s equation
-
vd = p, (19)

which is a first integral, as seen from (10) and (11). Using (19), we get from (10-17)

ap e — —
g‘t-*Vi(”iP)"PiV"i -syT (20)
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dj . = 21
.5]:.-*- Vi(vsi(] = pVs) e V) =p Vvsi - .PVP + [[VX.X]XZ]' b

Equations (10), (12), (18), (20), and (21) constitute the complete system of equa-
tions of the hydrodynamics of rotating superfluid *He. This system leads to the energy
conservation law

Y
— +¥0Q =0, 22)
dt

where the energy flux density is

[ -]

\%
Q=vi-pv, v) +(y+—-§-)g + wx% XX|+ (pv) v + Ts v, (23)

We can also formulate the momentum conservation law

where the stress tensor is

Ty =P8y +p v +vg, 8, — A oy +vg(f; —pog;) (25)

It is symmetrical by virtue of the invariance of £ to rotations.

We note that in contrast to'! we now have independent equations for ® an i
Accordingly, the number of kinetic terms in the equations is increased: in particular,
in contrast to'", the relative velocity and 7 XA enter in the kinetic terms
independently.

The authors thank G. Volovik for stimulating discussions.

DThis expression is gauge-invariant, and we therefore use it instead of the standard —p_v’a—-d,v—v.Q,-, which
differs from (9), when account is taken of (19), by the total divergence.
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